放射線医学利用研究分野における
研究推進方策

－放射線の医学利用研究に関する検討会 報告書－

平成 25 年 3 月 29 日
放射線医学総合研究所
放射線の医学利用研究に関する検討会
目次

1. はじめに ... 1

2. 診断分野における国内外の情勢、研究課題の整理及び研究の推進方策 2
 2-1 国内外の情勢 .. 2
 2-2 研究課題の整理 ... 3
 2-2-1 診断装置の画質向上 ... 3
 2-2-2 診断能力向上 .. 3
 2-2-3 被ばくの低減 .. 4
 2-2-4 実運用 .. 4
 2-2-5 教育・人材育成 ... 5
 2-3 研究の推進方策 ... 5
 2-3-1 診断装置の画質向上 ... 5
 2-3-2 診断能力向上 .. 6
 2-3-3 被ばくの低減 .. 6
 2-3-4 実運用 .. 6
 2-3-5 教育・人材育成 ... 6

3. 核医学分野における国内外の情勢、研究課題の整理及び研究の推進方策 7
 3-1 国内外の情勢 .. 7
 3-1-1 プローブ開発 .. 7
 3-1-2 腦神経領域研究 .. 7
 3-1-3 創薬 ... 8
 3-1-4 放射性同位素内用療法 .. 8
 3-1-5 機器開発 .. 9
 3-2 研究課題の整理 ... 9
 3-2-1 新規プローブの開発と臨床評価の推進 9
 3-2-2 核医学の幅広い医学領域への展開 10
 3-2-3 放射線治療と核医学の融合 11
 3-2-4 核医学機器開発 ... 12
 3-2-5 人材育成 ... 12
 3-3 研究の推進方策 ... 14
 3-3-1 新規プローブの開発と臨床応用の加速 14
 3-3-2 核医学の幅広い医学領域への展開 14
 3-3-3 放射線治療と核医学の融合 15
 3-3-4 核医学機器開発 ... 15
4. 治療分野における国内外の情勢、研究課題の整理及び研究の推進方策 16
 4-1 国内外の情勢 16
 4-2 研究課題の整理 17
 4-2-1 高精度治療 17
 4-2-2 放射線生物学 19
 4-2-3 併用療法による治療効果増強 19
 4-2-4 粒子線治療 21
 4-3 研究の推進方策 23
 4-3-1 教育制度の整備と人材育成の推進 23
 4-3-2 教育教材の整備 23
 4-3-3 国産治療装置の開発と国際競争力の強化 23
 4-3-4 産学官連携、国際協力・連携 23
 4-3-5 放射線治療の個人履歴リポジトリ 23

5. 医療被ばく分野における国内外の情勢、研究課題の整理及び研究の推進方策 25
 5-1 国内外の情勢 25
 5-1-1 国際機関 25
 5-1-2 海外諸国 25
 5-1-3 国内情勢 25
 5-1-4 放射線診療のリスク 26
 5-1-5 職業被ばく 26
 5-1-6 情報の一元化 26
 5-2 研究課題の整理 26
 5-2-1 放射線診療の実態把握 27
 5-2-2 医療被ばくの線量・リスク評価 27
 5-2-3 医療被ばくの合理的低減 27
 5-2-4 放射線診療情報の有効活用 28
 5-3 研究の推進方策 28
 5-3-1 放射線診療の実態把握 28
 5-3-2 医療被ばくの線量・リスク評価 28
 5-3-3 医療被ばくの合理的低減 28
 5-3-4 放射線診療情報の有効活用 29
6. 各分野の研究活動を推進するための共通課題と解決方策 ・・・・・・・・・・・・・・・ 30
 6-1 人材育成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 30
 6-2 規制緩和の促進 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 30
 6-3 標準化の推進 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 31
 6-4 研究環境の整備 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 31

7. 独立行政法人放射線医学総合研究所（放医研）の担うべき役割 ・・・・・・・・・・・ 32
 7-1 粒子線治療の普及、展開のための研究開発の推進 ・・・・・・・・・・・・・・・・ 32
 7-1-1 情報発信 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 32
 7-1-2 装置の小型化、低価格化 ・・・・・・・・・・・・・・・・・・・・・・・・ 32
 7-1-3 専門家の育成 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 32
 7-2 医療被ばくの線量・リスク評価及び放射線防護関連情報収集体制の構築 ・・・ 33
 7-3 標準化の推進 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33
 7-3-1 放射線治療の高精度化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33
 7-3-2 プローブ製造技術の標準化 ・・・・・・・・・・・・・・・・・・・・・・・・ 33
 7-3-3 国際標準化への貢献 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33
 7-4 産学官連携による機器・装置開発の推進 ・・・・・・・・・・・・・・・・・・・・・・ 33

参考 放射線の医学利用研究に関する検討会の構成員及び会議開催実績 ・・・ 35
1. はじめに

高齢化社会の進展とともに、さらなるQuality of Life（QOL）の向上が求められている。その際、医療現場にあっても、非侵襲性や安全性が高くかつ効果的な診断・治療技術の開発が期待されている。その意味で、今後放射線医療の果たす役割は益々重要になっている。

例えば、平成24年度から5か年にわたる国の「がん対策推進基本計画」では、重点的に取り組むべき課題として放射線療法の更なる充実を掲げており、重粒子線治療機器などの研究開発を推進することが明記されている。また「医療イノベーション5カ年戦略」においては、革新的な診断方法（診断薬、診断機器、検診方法）の開発・普及を進めるとともに、革新的外科治療・放射線治療を実現するため、国内の優れた最先端技術を応用した治療機器の開発・整備を行うこと、がんや精神・神経疾患等の原因分子やメカニズムの解明等のために、創薬候補物質の探索及びポジトロン断層法（PET：Positron Emission Tomography）疾患診断に資する分子イメージング技術に係る研究開発を進めることが述べられている。さらにこれらの取組みを通して、超高齢化社会に対応した、国民が安心して利用できる最新の医療環境の整備、医療関連市場の活性化と我が国の経済成長の実現、そして日本の医療の世界への発信という三つテーマが目標として定められている。

本検討会は、国内外における放射線の医学利用の現状と動向を俯瞰することで、今後重点的に推進するべき研究課題を明らかにするとともに、その推進方策を示すことを目的として、放射線医学総合研究所（放医研）に外部の学識経験者等をメンバーとして組織された。既に様々な機関で放射線の医学利用研究が実施されているが、本検討会では、診断、核医学、治療の各分野について、客観的に国内外の情勢についてレビューをした上で論点整理事を行い、そしてその結果を踏まえ各分野において今後取るべき研究推進方策について検討した。

今般、それらの検討結果がまとまったことから、報告書として提示する。
2．診断分野における国内外の情勢、研究課題の整理及び研究の推進方策
2-1 国内外の情勢

医療の高度化により、画像診断の重要性は以前にも増して高くなっている。臨床医学のすべての分野において画像診断が前提となっており、現在では画像診断なしの診療は考えられない状況となっている。病変の早期発見から、治療前の病変の進展範囲の把握や転移の有無の診断、治療計画、治療中、治療後の経過観察に至るまで、画像診断は診療に深く関わっている。X線は発見後すぐに人体の透視に応用され、長らく画像診断の中心的な役割を担ってきた。医療のニーズに答えるように、次々に新たなX線診断装置が開発された。また、超音波やMRIといった非放射線診断装置も開発され、目覚しい進歩を示している。画像診断が高度化するとともに医療も高度化し、現在は、CT、MRIなど低侵襲で多くの情報が得られる画像診断を有効に利用することにより、より正確な診断、治療が可能になっている。

画像情報は、コンピュータの発達と相まってアナログ撮影からデジタルデータの収集に変化した。画像のデジタル化に伴い、画像データをコンピュータ処理することで、アナログ撮影では見ることのできなかった例えば3次元画像処理、さらには時間的な変化を追加した4次元画像処理により、外科手術のシミュレーションや放射線治療の照射部位の正確な設定が可能になっている。

また、これら診断装置、診断技術の進歩により、診断技術を治療に応用し、カテーテルを用いる血管内治療（IVR）が行われるようになった。IVRは、経皮的に穿刺針やカテーテルを用いて治療を行うため、手術に比べると侵襲が少なく、高齢者や進行癌患者など、手術の適応にならない患者も比較的安全に治療効果を得ることができる。近年のカテーテルや穿刺針、ステントなどの様々なデバイスの開発、コイルなどの塞栓物質の進歩した結果、治療する疾患、術後感染における出血に対するIVRのみではなく、様々な部位の悪性腫瘍の塞栓療法や、心臓血管狭窄、胸・腹部大動脈瘤に対するステント留置術などの広範囲に渡る。組織焼灼・凝固療法用装置や、凍結療法用装置など新たな治療装置の開発により、X線診断のみならず超音波診断やMR診断を加え、広く画像診断を応用した侵襲の低い治療として広く実施されている。

一方で、現在の医療は画像診断に大きく依存しており、侵襲が少なく短時間の検査時間で結果の得られるX線を用いた診断件数は年々増加している。X線診断による患者の被ばくや、高額医療機器のコストなどは新たな課題となってきた。

放射線診断の研究は、基礎・臨床・工学系すべての分野において、病変を早期にかつ正確に診断することにより、手術・放射線治療・化学療法など治療による侵襲を最低にし、治療効果を最大にすることを主要な目的にしている。

画像診断のそれぞれの段階で、次のような研究分野が存在する。

a）診断装置の画質向上
患者の体内データ収集に関する研究分野である。正確な患者データをできるだけ侵襲の少ない方法で収集することを目的としている。

b）診断能力向上
得られたデータを用いて正確に診断する研究分野である。得られた患者データを画像化し、コンピュータを用いて画像処理することにより、正確な診断、治療に有用な
情報を作り出すことを目的としている。

c) 被ばくの低減
診断を目的とする被ばくを最小限にする研究分野である。診断可能な画像を、可能な限り少ないX線で撮影し、患者および、検査を担当する術者の被ばくを最小に抑えることを目的としている。

d) 実運用
ネットワーク技術、IT技術を活用し、患者の画像データを適切、効率的に保管、管理、運用する。患者の画像データを共有、転送することにより、病院や診療所間の連携や遠隔画像診断など地域医療連携に活用し、災害時の医療データの保管、バックアップ、医療の標準化、効率化を進めることを目的としている。

2-2 研究課題の整理
2-2-1 診断装置の画質向上
X線CTが開発されたことにより、単純X線写真では診断することのできなかった、体内の詳細な情報が得られるようになった。その後の高速化・高画質化により、より短時間で詳細な画像を得ることができるようになり、高速・広範囲撮影が可能となったことにによる3次元CT、4次元CTへの応用が可能となった。現在は、3次元CT、4次元CT、機能画像のためのさらなる撮影の高速化が課題である。

検出器がデジタル化することで、ノイズの影響が少なくなり、画質が向上し、デジタル診断装置の普及が急速に進んでいる。画像データがデジタル化されることにより、撮影した画像の処理によって画質を向上することが可能となった。検出器の改良によるハード面からの画質向上と、再構成方法の改良によるソフト面からの画質の高分解能、高コントラスト化が今後の課題である。

国内の高度医療の提供機関や研究所の多くは、海外装置メーカーの装置を導入し臨床的な研究がなされている場合が多い。一方で診断装置はブラックボックス化されており、必ずしも国内のニーズに合致しているとは言えない。

2-2-2 診断能力向上
診断装置の画質向上により、従来は見えなかった病変を検出することが可能になった。また、造影剤の使用、組織の血流動態を描出するダイナミック検査などの診断技術の開発により、病変の部位や性状をより正確に診断することが可能となった。それに加え、画像データのデジタル化により、患者から得られたデータのコンピュータ上での画像処理が可能になり、血流情報や細胞密度のマッピングや定量化等より正確な診断が可能になった。

他方、2-1で述べたように、放射線診断装置の進歩も著しいが、画像診断は、PETをはじめとする機能診断、被ばくを伴わないMRIや超音波など、多くのモダリティで各々着実な技術開発が進んでいる。これらの複数画像を組み合わせたマルチモダリティの画像診断により、診断の精度と効率を向上することが可能になった。例えば、MRIや、CTで得られた解剖画像と、PETや単光子放出断層コンピューター撮像法（SPECT : Single
Photon Emission Computed Tomography）など機能情報画像を重ねることにより、形態情報と機能情報を一度に観察でき、別々に診断するよりも、さらに正確な診断が可能になっている。ただし、マルチモダリティ診断においては、放射診断装置はモダリティの一つであり、診断の精度や効率を更に向上させるには、放射線診断以外の他の画像診断も積極的に導入し総合的な画像診断研究が必要である。

また、開発された画像処理や診断手法を、治療前診断および治療や手術の計画に実際に利用し、治療成績や手術材料を検討することで、診断精度や画像処理の有用性の検証を行い、診断、治療ヘフィードバックすることができる。このような診断治療融合による医療の高度化のために、さらなる診断法の改良や画像診断のノウハウを蓄積することも大きな課題である。

2-2-3 被ばくの低減

画像診断を用いて病変の進展範囲の把握や転移検索、治療効果判定を行う現在の医療では、頻回の画像検査は避けられない。従前より低線量で撮影が可能なX線CT装置やIVR装置などが開発され、医療現場で利用され始めるなど、画像診断における被ばくの低減技術は進歩を遂げつつあるが、良好な画像を得るのと同時に、更なる被ばく低減のための技術開発が必須である。

日本は、X線画像診断装置、特にX線CTの保有台数が世界一であり、大学・基幹病院からクリニックに至るまで広く普及している反面、日本における医療被ばくの割合はX線CTが一番多い。X線CTの被ばくを低減する技術として、管電流自動変調機構に加え、X線照射を低減させる技術が開発され、必要以上にX線の照射が行われないCT装置の開発が進んでいる。また、収集された画像データの再構成方法も進歩し、低線量でも画質が担保される技術の開発が進んでいる。これらハード面、ソフト面の複数の被ばく低減の技術が最新のCT装置に実装され、従来よりも患者の被ばくは低減しているが、なお一層の技術開発が必要と考えられる。

IVRに関しては、循環器疾患における救命に大きく寄与している一方、皮膚に確定的影響を生じるほど高い線量になることもあることから、より線量を抑える装置の開発が必要である。

一方、X線画像診断には法律による規制やガイドラインが無いため、X線検査の適用範囲や撮影間隔等の条件は担当医師の判断で決定されており、必要以上のX線検査が施行されている可能性は否定出来ない。またIVRに関しても、手技に加え、患者の被ばくを低減する配慮に関して医師の判断に任されているのが現状である。

このため、どのようなX線検査がなされているかを把握し、管理することが必要であるとともに、医療被ばくの正当化・最適化をはかることにより不必要な医療被ばくを低減させることが強く求められている。

なお、医療被ばくについては別途項目を設けて後述する。
2-2-4 実運用

病院のIT化の進捗により、デジタル化された診断装置は一般に病院のネットワークに接続・保存されている。これまでにも述べたように、X線CTをはじめデジタル化された診断装置は全国に広く普及している。デジタルデータはDICOM規格により統一化されていることから、各病院間の画像データの共有化により、病院と診療所間の連携や遠隔診断、健康診断の効率化、患者被ばくの低減など放射線診断画像の利用の効率化が可能であり、更なる医療の質の向上と均質化が期待できる。しかし、現状では画像データの共有化はなされておらず、撮像法等の標準化や個人情報保護、情報セキュリティを踏まえた画像データ運用の仕組み作りが課題である。

2-2-5 教育・人材育成

これまでに述べたとおり、放射線診断は今日既に医療現場で広く利用されている。診断装置やデバイス、診断方法や診断技術は多岐にわたり、研究分野として非常に広範囲であり、かつ専門性が高く、複数の技術が融合されている場合が多い。一方で、診断装置・診断技術の進歩は著しく、かつ開発された診断装置・診断技術はすぐに臨床に応用される。放射線診断装置の普及に伴って放射線診断専門医数は極めて少なく、撮影の指示や血管内治療などの処置が臨床各科の医師によりなされているのが現状である。これらの医師は医療被ばく・放射線機器の知識が十分ではない場合があることから、放射線診断専門医の育成とともに、放射線を扱う医師に対する放射線機器や医療被ばくに関する教育が喫緊の課題である。

また、放射線診断についても、造影剤・デバイス・検査手法の開発により多様化、複雑化している。患者が安全に放射線診断を受けたい確かな画像情報を得るためには、放射線診断に関わる技師や看護師の役割が大きい。装置・検査手法の高度化と、検査装置、診断画像の品質管理が、診断画像の質の保証と不要な被ばくの低減、延いては安全に検査を実施するために不可欠である。また、撮影された画像から、よりよい診断、治療ができるようにする画像処理を行うためには、技師だけでは十分対応できない場合があることから、専門知識を持った医学物理士の協力が必要である。

医師と同様にコメディカルスタッフに関しても、新しい診断技術に関する十分な知識が必要であることから、教育の機会を設けることが必要である。さらに、放射線診断の基盤となる知識と技量を有する医学物理士の育成ならびに資格の制度化も不可欠であろう。

2-3 研究の推進方策
2-3-1 診断装置の画質向上

臨床のニーズ、基礎研究の成果を装置メーカーに示すなど、ユーザが診断装置、ソフトウェアの開発に積極的に参加し、出来上がった診断装置を臨床に使用して診断精度、機能性や実用性を検証し、それらの結果を装置メーカーにフィードバックするなど、企業との連携により診断装置の画質を向上させる。それにより、新しい診断装置、新しい診断技術、治療技術の開発を推進する。
2-3-2 診断能力向上
X線診断などの形態を中心とした画像診断に加え、MRIやPETなどの機能診断を積極的に導入する必要がある。画像解析や画像診断の技術を高度放射線治療に応用するなど、分子イメージングの知見を統合した総合的な画像診断を行うことにより、治療成績を向上させ副作用を低減させることが期待される。

2-3-3 被ばくの低減
X線CTの自動露出機構などデータ収集のためのX線照射量の最適化や、逐次近似法など得られたデータの画像処理など、ユーザが被ばく低減を目指す装置開発に積極的に参加する。また、医療被ばくの現状を把握・管理し、我が国の医療実態に合致した撮影法の標準化を進める。

2-3-4 実運用
疾患によるX線の照射線量などの撮影条件や、適応などエビデンスに基づくCTのヘリカルピッチや再構成方法など、画像データの共有化に必要な撮影法の標準化を行う。装置の品質管理や専門知識を持った人材を育成することにより、放射線画像の質を高める。
患者情報や画像データ、医療被ばくを一元的に効率化よく管理できるデータベースを構築する。その際、データを共有するための情報セキュリティや大量のデジタル画像データの保管、運用の仕組み作りが課題である。

2-3-5 教育・人材育成
正確な診断、IVR治療の向上、医療被ばくの低減のためには、放射線診断専門医の育成が必要である。
例えば、各診療科の専門医会・学会等とも協力し、医療関係者に対して放射線の影響に関する知識や最新の放射線診断の知識にアップデートできる再教育の機会を充実させたり、コメディカルスタッフに対してモダリティごとの専門制度を充実させたりするなど、放射線診断特有の知識や情報を提供できる仕組み作りを行う。また、放射線診断装置の品質管理を行い、高度な診断をサポートする医学物理士を育成する。加えて、患者に対して、放射線診断の現状・限界や放射線診断に伴う医療被ばくに関しての正しい知識、情報の発信ができるような人材を育成する。
これら放射線診断に係る教育・人材育成は、一つの研究所や大学単位で個別に行うのではなく、放射線科以外の診療科との連携、複数の大学との連携、研究所の部門を超えて連携することが必要である。
3. 核医学分野における国内外の情勢、研究課題の整理及び研究の推進方策

3-1 国内外の情勢

核医学分野における医学利用研究は、疾患・病態・生理機能を検出する放射性医薬品（プローブ）の開発、プローブの生体内分布を正しく検出し定量評価するためのイメージング・測定機器および解析手法の開発、それらを基盤とした正常生理機能および疾患の病態・診断研究という流れで進められてきた。

3-1-1 プローブ開発

プローブ開発・応用においては、腫瘍、脳神経、心臓、内分泌、消化管、骨軟部など様々な領域の疾患に対応できるプローブが開発され、臨床に応用されてきた。近年の重要な進歩として、PET用プローブの開発・応用が挙げられる。そのなかでも、糖代謝をイメージするF-18標識フルオロデオキシグルコース（FDG）の開発と臨床応用のインパクトは大きい。特に、がん細胞の活発な糖代謝を標的とするFDG-PETは、多様ながんの診断（良悪鑑別、ステージング、再発診断、治療効果判定など）に応用され、今やがんの診療に欠かせない診断法である。

しかし、FDGにも限界があり、FDGの欠点を補い、FDGでは得られない情報を提供する新規PETプローブの開発に向けて世界中のPET研究者が注目を向けていている。現在はFDGに代表される「代謝」を標的とするプローブが主流であるが、個々の病変・細胞に発現する分子をイメージングで捉えるためにこのプローブ開発も行われている。その成功例のひとつが、放射性標識ソマトスタチン類似体（In-111標識オクトレオチド）を用いたイメージング（オクトレオスキャン）である。これは細胞に発現するソマトスタチン受容体を標的とするイメージング法であり、ガストリノーマやグルカゴノーマ、カルチノイドなどの神経内分泌腫瘍の診断には欠かせない検査手法として、国際的に認知され広く臨床に応用されているが、残念ながら、我が国では未だ薬事承認に至っていない。

3-1-2 脳神経領域研究

脳神経領域では、糖代謝や血流を指標とした脳の循環代謝研究から始まり、神経伝達物質受容体を画像化するプローブの開発と共に、神経変性疾患や精神疾患を対象とする研究が開始された。現在もっとも多くの研究が進められているのがドーパミン神経伝達の研究である。パーキンソン症候群ではドーパミントランスポーターの減少が、診断にも利用されている。ドーパミン神経の神経終末に発現し、ドーパミンの再取り込みを行っているドーパミントランスポーターのイメージングが、パーキンソン病やレビー小体型認知症の診断に有効である。これまで多く開発されてきたPET製剤に加え、SPECT製剤として1-123FP-CIT（DaTSCAN）がEUおよびアメリカで承認され臨床診断に用いられている。さらに抗うつ薬の作用点としてのセロトニントランスポーター、あるいは抗精神病薬の作用点としてのドーパミンD2受容体のイメージングにC-113-amino-4-(2-dimethylamino-methylphenylsulfanyl)benzonitrile（DASB）、C-11racloprodeなどが用いられている。例えば、抗うつ薬や抗精神病薬の用量設定試験にPETによる占有率測定が用いられている。
近年、アルツハイマー病の中核病理であるアミロイドの蓄積を、生体内で PET により可視化することが C-11 標識 Pittsburgh compound B (PIB) により可能となり、さらに発症前のアミロイドの蓄積も診断が可能となった。これにより現在主に記憶機能や日常生活の障害を根拠に診断されていたアルツハイマー病が、診断基準にアミロイドイメージングがバイオマーカーとして取り入れられる方向にある。これは、従来核医学診断が疾患の診断基準に取り入れられなかったことを考えると画期的であり、今後世界中で爆発的に増加することが予想されている。この意味で、認知症の診断および治療薬の評価に PET アミロイドイメージングは必須の診断マーカーとなったと言える。このような現状を踏まえて、より半減期が長く放射性薬剤の配送も可能な、F-18 による標識アミロイドイメージング剤が開発され、中でも米国では、製薬企業が開発しアメリカ食品医薬品局 (FDA) の承認を得た薬剤の臨床応用も進んでいる。すでにアルツハイマー病の新規治療薬の臨床試験においては、特にアミロイドの除去あるいは産生抑制を薬効とする薬剤の治療評価には、アミロイドイメージングによる評価が必要項目となっている。現在日本においても Florbetapir の臨床治験が進行中である。

3-1-3 創薬
また PET は診断だけでなく、創薬領域での応用も進められている。アメリカの探索的 IND (Investigational New Drug) ガイダンスにはマイクロドーズ臨床試験という考えが導入されており、この試験方法として、標識した極微量の薬剤の体内での動きが、PET により測定されている。本邦においても平成 20 年に厚生労働省よりマイクロドーズ臨床試験の実施に関するガイダンスが発出され、PET を用いた臨床試験実施が可能となっている。

3-1-4 放射性同位元素内用療法
核医学診断に用いられるプローブは、診断用の放射性核種を病巣に選択的に運搬する能力を有する。そこで、標識に用いる核種を β線のような飛程が短く、細胞傷害性の高い放射線を放出するものに変えることによって、病巣内部からの放射線治療が可能になる。この手法は内用療法と呼ばれている。この手法は決して新しいものではないが、放射性ヨード (I-131) を用いた甲状腺機能亢進症や分化型甲状腺がんの標準治療として、古くから日常的に行われている。内用療法は、侵襲性の低い治療法であることより、体内に投与されたプローブは全身を循環するので、目に見えない微小病巣を含む多発転移症例にも治療効果が期待できるなどの利点がある。その適応箇所の拡大に資する新たな内用療法プローブ開発が欧米を中心に進められ、我が国においても、塩化ストロンチウム-89 を用いた有痛性骨転移の疼痛緩和療法（メタストロン）、イットリウム-90 で標識した抗 CD20 抗体を用いた悪性リンパ腫の治療法（イルトリマブ、チウキセタ）などが新たに保険適用となった。欧米では、さらにイットリウム-90 やルテチウム-177 で標識したソマトスタチン類似体や抗腫瘍抗体の治療応用に向けた研究が活発に進められている。これまでβ線核種の使用が一般的であったが、より飛程が短く細胞傷害性の強いα線放出
核種の治療応用も開始されており、欧米ではラジウム-223を用いた骨転移治療（アルファラジン）において有望な成果が報告され、我が国においても臨床治験が開始されている。内用療法は、今後核医学が日常臨床にその存在感をアピールできる重要な分野と考えられる。

3-1-5 機器開発
核医学イメージングの特徴は、体内に投与した放射性医薬品が発する放射線を体外に置いた検出器で検出することにある。γ線イメージングは、体外に固定した検出器で体内から発出されるγ線を検出し、平面像を得るプラナーイメージングに始まり、検出器を患者的周りで回転させ、体外の多方向からγ線を検出して断層像を作成するSPECTに進化を遂げた。

また、ポジトロン核種から放出される陽電子が消滅する際に、180度方向に出る二本の消滅放射線を同時に計測する手法を応用して断層像を得る、PETが開発された。PETの登場により、プローブの体内分布を高感度、かつ高い定量性をもって評価することが可能になり、前述のとおりFDGの臨床応用の拡大と相まって、PET機器が加速度的に普及してきた。

さらに現在では、PETとX線CTが合体したPET/CTが開発され、近年注目されつつあるマルチモーダル機器の端緒となった。これによりPETのもたらす代謝・機能情報と、CTの提供する高精度な解剖学的（形態）情報を融合した診断が可能になった。特にがん診断において高精度の診断を可能とし、現在では、PETに変わりPET/CTを導入する施設が増加している。また、PET/CTの出現はCT画像を基に策定される放射線治療計画への、核医学画像の直接的応用の可能性をもたらした。CTとSPECTの合体したSPECT/CTも開発され、日常臨床応用されつつある。さらに、PETと放射線被ばくのないMRIとのマルチモーダル機器（PET/MRI）も開発され、今後普及していくものと思われる。

一方、多様な放射性薬剤の開発と共に、開発段階において遺伝子変更マウスなどの小動物イメージングの需要が高まってきたことから、複数の企業で高い分解能をもつ小動物用PETが開発されている。このような核医学機器開発においては、日本の基盤技術・要素技術が世界的に高いレベルにあるが、残念ながら最終的な機器（完成品）のシェアという点では、海外のメーカーに大きく水をあけられているのが現状である。

3-2 研究課題の整理
3-2-1 新規プローブの開発と臨床評価の推進
これまでに、様々な疾患、病態、生理機能をイメージングで捉えるプローブが開発され、臨床応用されて来たが、臨床のニーズすべてに応えるには至っていない。高齢化社会においては、特に難治がん、認知症、脳卒中、循環器疾患が重要なプローブ開発および臨床評価の対象である。
a) 難治がん診断
がんの難治性には、がん細胞自体の性質に加え、がんの微小環境要因もあり、これらの分子や要因を正しく捉えるプローブを開発し応用することが、適正な治療法の選択、効果予測、ひいては難治がん制御率の向上につながると考えられる。

b) 認知症診断プローブ開発
認知症は、中核病理を形成する異常たんぱくの分子構造から分子病態に基づく新しい分類が進行中で、これら複数の蓄積異常たんぱくに特異的なプローブの開発は、発症のメカニズムの解明や治療法の開発にもつながる。現在臨床応用が進んでいるアミロイドイメージングに加えて、神経細胞死と密接に結びついているタウ蛋白の可視化は、早期の発症予測に加えて発症予防法の開発にもつながると考えられる。

c) 脳卒中診断開発
脳卒中は、死亡原因では第三位であるが総患者数ではがんとほぼ同じであり、中でも脳梗塞は脳卒中患者の6割を占めている。脳梗塞の治療では、原因となる塞栓源に対する治療と梗塞対に対する治療が行われ、塞栓源については、血栓の局在と性状を計測するためのプローブ開発が治療成績の向上につながると考えられる。また、梗塞対については、フリーラジカルや炎症反応のマーカーなどによる病態評価が、脳保護治療薬の開発や治療効果の判定に有用と考えられる。

d) 循環器疾患診断開発
循環器は生命維持に不可欠であり、心筋梗塞、心不全等に加えて動脈硬化等が重要な診断目標となっている。特にアテローム性動脈硬化は、糖尿病、高血圧、喫煙等によって進行しやすいことが報告され、その早期発見につながる診断法の開発が望まれている。

3-2-2 核医学の幅広い医学領域への展開
a) 個別化医療への貢献
近年、疾患毎に均一な治療を行うことを（均てん化）に加え、疾患の名称は同じでも、個々の疾患の個性に見合った治療法を選択して実行する「個別化医療」が重視されてきている。個別化医療の実施には、様々なプローブを用いて個々の疾患の個性を非侵襲的に評価できる核医学イメージング（分子イメージング）の手法が、重要な役割を果たすと考えられる。現在、様々な分子標的医薬品が開発・応用されているが、これらが効果を発揮するためには、事前にイメージングにより、個々の患者の疾患ごとにその標的分子が発現しているか否かを把握することが重要である。

b) 創薬への展開
3-1-3 に述べたように、欧米においてはマイクロドージングの創薬への応用が拡大しているが、我が国においては、その応用が限定されており、今後はその積極的な応用が重要となる。
c) 診断・治療統合（Theranostics）
診断と治療を連結する新たな研究領域として Theranostics という言葉（治療：Theraeutics と診断：Diagnostics を合体させた造語）が広まりつつある。薬物送達システム（Drug Delivery System：以下 DDS）とイメージングを組み合わせることにより、事前に薬物の標的への集積性を評価したり、DDS のプロセスをリアルタイムでイメージングしたりすることができれば、予測治療、個別化医療への貢献は大きい。このためには、治療薬の送達と診断用核種の送達といった複数の機能を有する多機能プローブの開発が重要な課題であり、近年のナノテクノロジーの進歩が Theranostics 研究の進展に大きく寄与すると期待される。

d) ガイドライン、多施設臨床研究
新規に開発されたプローブを広く臨床に応用していくためには、信頼性の高い臨床研究を遂行して、その有用性に関して高いエビデンスを得る事が重要である。そのためには、プローブの製造、品質評価、PET カメラ等の計測装置、臨床研究プロトコル等に関するガイドラインに従って臨床評価を進める必要がある。このようなガイドラインは、現在は整備されていないことから、関連学会等を含むオールジャパン体制で整備が必要である。ガイドラインの下、均一で精度の高い多施設臨床研究を行うことで、新規プローブの高度医療・先進医療での認可、更には保険認可への流れが加速できると期待される。

3-2-3 放射線治療と核医学の融合
核医学が真の意味で診療に貢献するためには、病気の診断に留まらず、治療に直結する情報をもたらすこと、更に、核医学技術を治療に直接応用することも重要である。

a) 放射性同位元素内用療法
内用療法は理論的には非常に有用な治療法であるが、今のところその適応範囲は限られている。今後は既存の内用療法の適応疾患の拡大、有用な診断プローブの内用療法ブローブへの転換や治療効果の増強に向けた研究など、応用の拡大に向けた取り組みが求められる。

b) 核医学画像の放射線治療高度化への応用
放射線治療の高度化のためには、治療計画策定の際に、治療対象となる標的（GTV：gross tumor volume）を正確に設定する必要がある。現在は CT 画像や MRI 画像を元にした治療シミュレーションが広く行われており、さらに FDG を中心とする PET 画像も付加して治療標的を設定・修正することも行われつつある。今後は、例えば PET プローブで検出されるがん組織内の治療抵抗性部位をもとにし、GTV の中にいわゆる bGTV（biological GTV）を設定し、そこにより高い線量を集中させることにより、がんの局所制御率を向上させる。強度変調放射線治療（IMRT）への PET 画像応用が重要な課題である。さらにこの手法の重粒子線高速 3 次元スキャニング照射法への応用は、
強度変調重粒子線治療（IMCT）という将来の新しい放射線治療法への発展が期待される。

3-2-4 核医学機器開発

個々のプローブがその特性を最大限に発揮するためには、プローブの分布・動態を正確に捉えるイメージング機器の開発が並行して行われることが重要である。

a) プローブの体内動態・分布を高精度に評価できる機器開発

今後、核医学診断に求められるものとして、疾患全体としての均一な評価に加え、がん組織内における難治部位の存在や、原発巣と転移巣の性質の相違など個々の疾患の中の不均一性の評価や、超早期がん・微小がんなど非常に小さな標的の検出など、より高精度な診断への要望が高まっている。そのためには、疾患内のごく一部の領域に集積したプローブ、非常に小さい標的に集積したプローブからの微量の信号を効率よく捉え、高精度に画像化できる機器が求められる。高感度と高解像度の両立は困難な課題であるが、この限界を打ち破る技術革新が求められている。

また、新規プローブの早期評価やマイクロドージングにおいては、プローブの全身動態のダイナミックな変化を正確に把握するために、被験者の全身をリアルタイムで評価出来る機器開発も重要な課題と考えられる。

b) マルチモダリティ

PET/CT、SPECT/CTの開発は、画像診断領域において機能・代謝画像と形態画像を融合することによる新たな診断技術をもたらした。その結果、診断精度の向上、診断対象の拡大等、同領域の進展に大きく寄与するとともに、新たなマルチモダリティ機器、診断技術の開発への期待が高まっている。PET/MRは機器としての開発を経て複数機能画像融合診断実現への道を進んでおり、その臨床的展開が進められている。今後は、例えばPET画像を見ながらリアルタイムでインターベンションを行う、標的をPETで確認しながら放射線治療を行うなど、診断と治療を融合できるような機器開発も重要な課題である。

c) PET測定の標準化

現状のPET装置では、機種の違いにより定量測定値に系統的な誤差がみられ、特に認知症におけるアミロイド蓄積量の評価などの脳神経領域で問題となる。これは多施設共同での大規模臨床研究を行う上でも障害となるため、機種の違いによらず普遍的な定量測定値が得られるPET装置システムを、ハードウェア、ソフトウェアの両面から開発していくことも重要な課題である。

3-2-5 人材育成（核医学診断医、核医学治療医、診療放射線技師、放射性薬剤研究者、医学物理士等の工学研究者、核医学的技法を理解した研究者）

画像診断は、専門家集団の連携によってその能力を発揮できることから、その普及と活用には人材の育成が不可欠である。
a) 医師
核医学的手法は、標識化合物の動態を生体で追うという基本原理を理解することにより幅広い医学領域で利用可能である。現在、基本的な技術を核医学専門の医師が担当し、研究的な応用は循環器内科、呼吸器内科、脳外科、精神科、神経内科、泌尿器科など広い範囲の医学領域で活用されている。そのため核医学測定の基本原理を、多くの応用分野の医師に教育していくことが必要であり、これは核医学の正確な臨床応用のみならず、新しい診断マーカーの開発にも寄与することが期待できる。
核医学診断・治療に資する新規プローブの臨床応用の加速に向けては、適正な臨床研究を立案・実行し、結果を正しく評価できる研究者の育成が重要な課題である。核医学研究領域は、医学に加え、薬学、生物学、物理学、工学等の多大の学問領域の協調の上に成り立っており、広い視野を持った人材の教育・育成システムの確立が望まれる。

b) 診療放射線技師
核医学の二大要素はプローブと、PETやSPECTなどの測定装置であるが、核医学検査を適切に施行し、正確な診断を得るためには、核医学測定装置の品質管理に必要な知識と実践力を身に着けるとともに、標識化合物の体内動態と測定する生理的パラメータを理解した上で検査を施行することが必要である。このような専門性をもつ診療放射線技師を育成するためには、従来から行われていた医学物理学から核医学検査装置の原理や品質管理に関する教育に加えて、核医学検査用標識化合物の体内動態や関連する医学・生理学についての教育も必要であり、これらの教育を通じて医師や薬剤研究者、工学研究者とも連携をとって任務を遂行できる人材を育成していく必要がある。

c) 放射性薬剤研究者
PET薬剤等の開発に必要な放射性核種の製造や、放射性同位素を導入する標識反応を考慮した標識合成・分離・精製技術の開発、薬剤候補の探索、設計、合成及び前臨床評価を行える人材の育成が、重要な課題である。また、臨床研究に必要で安全かつ高品位な薬剤を製造するためには、製造技術・検定方法の普及、及び標準化を推進、展開できる人材の育成が望まれる。

d) 医学物理士等の工学研究者
PETやSPECTなど核医学検査の測定精度を向上させ、診断精度もさらに高める研究は、標識化合物の開発と並んで核医学の重要な研究テーマである。核医学分野の物理・工学研究は、核医学測定装置の検出器の開発から、画像構成法の開発、吸収・散乱などの各種画像補正法の開発、測定データから生理学的パラメータを算出するための数理モデル解析法の開発など、多岐に渡る分野の研究が必要である。そのためには、それぞれの分野で材料工学、電子工学、数学、医学・生理学などの知識が必要となる。これらの多岐に渡る分野の研究者を育成する上では、関連する学際領域の系統
的な教育が必須であり、それぞれの分野だけでなく、測定システム全体から医学利用までを見据えた上で研究開発を行いうる人材の育成が望まれる。

3-3 研究の推進方策
3-3-1 新規プローブの開発と臨床応用の加速

新規プローブの開発と臨床応用の加速においては、先ずは、個々のプローブの評価に適した病態モデルを確立し、それを用いて疾患原因解明・病態解明に向けた研究を推進し、目的に応じた評価手法の適正化が行われる。その後の成果を元に、臨床例での薬剤設計の正当性を評価する（POC: Proof of Concept）研究が行われる。臨床 POC 研究の結果をもとに、必要に応じて前臨床に戻ってプローブおよび評価手法の改良が行われる。このような正方向および逆方向の橋渡し研究（Translational/Reverse Translational Research）を効率的に進めることによって、核医学診断法が、診療に役立つイメージングバイオマーカーとして確立することになる。

精度・信頼性の高い臨床研究推進のためには、様々なレベルでの標準化が重要となる。多くの PET プローブは、各研究機関に設置されたサイクロトロン、ホットラボで個別に製造される場合が多く、プローブの製造方法、性質評価（QA: Quality Assurance）を統一することが重要である。また、共通ファントムを用いた PET 機器毎の定量性の均一化など、プローブの動的・静的計測・評価方法の統一化も多施設での研究成果を共通の指標で評価する上で欠かすことが出来ない。さらに、臨床研究のプロトコール自体の標準化も重要である。

このような条件を満たしているかどうかについて、専門機関を設置して各施設の査察を行い、施設認証を行っていくことも重要である。最終的には、これらは国内に留まらず国際的ハーモナイゼーションに向けた取り組みを進める必要があり、それにより、国境を超えた国際的多施設臨床研究が可能となる。これらの分野における専門人材の育成に向けたプログラムを確立することも重要である。

3-3-2 核医学の幅広い医学領域への展開

創薬への貢献が期待されるマイクロドージングの加速のためには、あらゆる医薬品の C-11 標識が可能になるような、多様な C-11 標識中間体の製造法と標識法を確立することが必要となる。また、実際の遂行にあたっては、秘密保持体制など製薬メーカーとの密な連携体制を確立することが重要である。

新薬の薬効評価においては、治療効果のサロゲートマーカーとしてのプローブの開発や定量法の開発が重要であり、個別の治療薬の作用機序を考慮した適正なプローブの開発と、治療効果の評価指標の確立に向けた研究を、製薬会社と共同でコンパニオン診断薬（新規治療薬の薬効評価に適した診断用プローブ）の開発として進める必要がある。

診断・治療統合（Theranostics）においては、発展のめざましいナノ技術との融合が重要であり、そのためには医工連携が必要である。DDS の可視化に向けた多機能プローブ開発においては、PET による長期間の定量観察が必要であり、そのためには現
在 PET プローブの標識に頻用されている短半減期のポジトロン核種に加え、中〜長半減期のポジトロン核種の製造法を確立することと、他の施設への供給体制を整備することが必須である。

3-3-3 放射線治療と核医学の融合
内用療法プローブの開発においては、基礎研究から導き出された標的が真の治療標的として機能しうるかどうかを、疾患モデルを用いた治療実験で実証する。
また、治療効果の増強に向けては、標的への集積性の向上や、線量限定の原因となるリスク臓器への非特異的集積の低減に向けたプローブおよびその標的化手法の改良とともに、より高い治療効果が期待できるα線を含む新規治療用放射性核種の製造法とその安定供給体制を確立することが重要である。
臨床応用に向けては、特に抗体のような生物製剤においては無菌的な大量合成・標識法の開発などが必要で、臨床応用に向けたガイドライン等の整備などまだまだ未解決の部分も多く、これらには密な産学官連携が必要である。
放射線治療高度化への核医学の応用においても、核医学画像を治療計画装置に取り込んで CT や MRI などの形態画像とずれなく統合させることができる重要で、治療計画装置開発、ソフトウェア開発など、こちらも医工連携が必要な領域である。これらの技術と、高精細な治療計画・治療技術の融合により、放射線治療の高度化が達成されると考えられる。

3-3-4 核医学機器開発
3-1-5 でも述べたように、核医学機器開発において日本のメーカーは海外のメーカーに大きく後れを取っているのが現状である。しかし、大学、研究機関を含め、我が国には高い要素技術が存在する。今後の機器開発においては、高分解能と高感度の両立という難しい課題が立ちはだかるが、機器メーカー、大学、研究機関の有する高い技術力を融合し、さらに高度化することによって、この課題を克服できると期待される。また、臨床機の製作は、技術的にも経済的にも単一施設で達成することは困難であり、この点でも産官学連携の体制をもって研究開発を進めるべきである。
マルチモダリティ機器への展開においては、核医学のみでなく、診断（CT、MRI）、治療部門との連携を保ち、臨床現場を見据えた開発の方向性を保つことが重要である。
4. 治療分野における国内外の情勢、研究課題の整理及び研究の推進方策
4-1 国内外の情勢
放射線治療は、手術・薬物療法と並ぶ、がんの3大治療法の1つであり、2007年のがん対策推進協議会の資料では、米国では66％、ドイツでは60％、英国では56％のがん患者が放射線治療を受けていると報告されている。
放射線治療には、外部照射、小線源治療、内用療法があり、外部照射装置のリニアックによる高エネルギーX線治療が最も一般的である。他に外部照射には、ガンマ（γ）線、電子線、陽子線、重粒子線などが使われる。コバルト60などによるγ線治療は高エネルギーX線治療に移行し、我が国では現在殆ど行われなくなっている。陽子線、重粒子線などのいわゆる粒子線治療は、高エネルギーX線と比較して病巣への線量集中性に優れ、生物学的効果が高いなど有用な点が多いが、治療システムの開発には物理工学の学識と技術力、臨床使用には試験研究が必要である。
日本放射線腫瘍学会（JASTRO）の、2009年の全国放射線治療施設の定期構造調査報告によれば、2009年に放射線治療を受けた推定新患数は20万1000人、再患数を加えた総患者数は約24万人となる。新規施行患者における疾患割合は、乳がん22%、肺がん19%、前立腺がん11%などであった。放射線治療全体の患者数は増加しているが、がん患者全体に対する放射線治療の利用患者率は、2005年で25%、2009年で29%であり、増加傾向とはいえ、まだ欧米先進諸国の半数程度である。
JASTRO構造調査に応じた700施設から推計する2009年時点で我が国の放射線治療施設は、約770施設で、放射線治療施設数は人口あたりで考えると欧米諸国に比べてさほど劣っているとは言えないが、施設あたりのリニアック台数は平均1.2台であり、高精度治療が行える体制ではない。しかし、我が国は粒子線治療の分野では世界最先端の位置にあり、現時点で世界の陽子線治療施設27のうち7、重粒子線治療施設6のうち3施設が存在し、なお数施設が建設中である。
がん治療に求められるところは、治療効果が高いこと、有害事象が少ないこと、治療による負担が少ないことであり、放射線治療においては、
● 正常組織への照射線量を可能な限り少なくするため、治療に必要な部分にだけ正確に高線量を照射する。あるいは効果の高い放射線を照射する。
● 有効な線量分割を用いる。
● 治療回数や期間を減少させ、治療による身体的・社会的な負担を軽減して、さらには経済的負担を軽減させる。
などがこの目標のために必要と考えられる。
現在、これらの手段として研究されているのが、画像誘導放射線治療（Image Guided Radiation Therapy: IGRT）、強度変調放射線治療（Intensity Modulated Radiation Therapy : IMRT）、体幹部定位照射（Stereotactic Body Radiotherapy : SBRT）、定位手術的照射（Stereotactic Radiosurgery : SRS）、粒子線治療、4次元放射線治療、放射線生物学的理論に基づく寡分割照射法、化学療法、分子標的薬剤、放射線増感剤の併用などである。
放射線治療としてももっとも広く行われているX線治療の領域では、1990年代から、IMRTに代表される放射線治療の高精度化が進み、局所効果が高く有害事象が少ない治療法となってきた。例えば、従来は手術で治療されていた前立腺がん患者には、高齢者が多いことから、体への負担が少なく外来通院にて施行でき、且つ、治療結果は手術と同様である放射線療法が汎用されるようになってきている。

IMRTは欧米では標準治療となってきているが、我が国では診療報酬算定で複雑とされる放射線治療の件数は28.6%、そのうちIMRTは2.1%の4,296件で、101施設しか実際に行っていたなかった。その背景には、医学物理士、放射線治療専門医、放射線治療専門技師など、高度な照射を行うための治療スタッフの不足がある。X線治療の分野での治療機器の開発が欧米諸国に遅れを取っているのも医学物理士の人材不足が一因と考えられる。国のがんプロフェッショナル養成プランなどによる人材育成で充足してくれれば、さらに高精度治療の普及が進むと共に、放射線治療に関する研究も推進するものと期待される。放射線治療分野の研究で、我が国が先鞭を取っているにしろ、肺などのSBRTと粒子線治療、特に重粒子線治療がある。これらは、従来の照射法では、効果が十分でなかった腫瘍に対して、患者の身体的な負担が少ない有用な治療法となっている。

乳がん、前立腺がん、肺がんなどの、放射線治療を利用することが多い疾患のますますの増加、人口の更なる高齢化、放射線治療に関する他科の医師や市民の認識の向上により、放射線治療の需要は増加しており、より有用な放射線治療の開発普及が望まれる。

4-2 研究課題の整理
4-2-1 高精度治療
a) 画像誘導放射線治療(IGRT)

患者の体位を十分に固定しても、呼吸や腸管の蠕動などの人体の生理性の動きは抑制できない。これまでの治療では皮膚のマーカーや透視での骨位置で照射部位を決定していたが、日々の治療の間での照射部位のずれや照射時間内の臓器移動によるずれには対応できていなかった。標的腫瘍部位を逃さないように、幅広いマージンを設定することで対応していたが、それが周囲正常組織への有害反応に繋がっていた。

この対策として、治療直前あるいは治療中の画像で正確に照射部位を同定し、呼吸等の体の動きに同期して照射、あるいは追撃照射するのがIGRTである。従来多く行われていたのは、呼吸同期法で、呼吸の波形を胸壁の動きなどにより捉え、腫瘍がある位置に存在する時のみ間欠的に照射するものである。従来の幅広いマージンを設定する照射に比べれば安全性は増加したが、呼吸波形が捉えられず腫瘍への照射の位置がずれる可能性、間欠的に照射するため照射に時間がかかるなどの問題がある。

4次元CTにより時間軸を加味したモデリングの治療計画を行い、動体追尾機能により4次元治療を行う研究が進められている。この機能により、治療精度と共に利便性も向上し、周囲正常組織への有害反応の軽減も期待できる。将来的には、4次元CTによるリアルタイムの治療計画を行い、動体追尾機能によりオンデマンドの4次元治療を行う方法が考えられている。

魚群探知機と同様の機能で腫瘍を追尾する装置や、ロボットカウチなどにより高精
度に標的腫瘍部位を追尾するシステムの研究も進めている。

IGRT の画像のモダリティとして現状では CT、X 線透視が主であるが、MRI や PET による IGRT 装置も研究されており、陽子線治療では自己放射化 (auto activation) にによる IGRT 装置が研究で臨床試用されている。

周囲の正常組織に照射される量を可及的に減少させ、必要量の放射線を正確な位置に照射する技術に関する研究は、放射線療法の根本をなすものとして重要である。

b) 強度変調放射線治療 (IMRT)
治療用のコンピュータによる理想的な計画からの逆計算に基づき、高性能の照射絞り装置（マルチリーフコリメータ）の制御でビーム内の強度を変えながら多方向から照射することにより最適な線量分布を得る方法であり、IGRT との併用によって治療成績の向上を目指している。IMRT によって正常組織の線量が従来の外部照射よりも抑えられるため、腫瘍への線量増加が可能であり、これによって良好な治療成績が得られるようになった。我が国においては 2000 年頃より診療に使用されるようになり、徐々に実施施設が増加し、2008 年より中枢神経系腫瘍、頭頸部腫瘍、前立腺がんに対して保険適応となり、現在はすべての限局性の固形悪性腫瘍で臨床使用可能となっている。実際の線量分布が患者の動きに敏感であるため、定位放射線治療に次ぐ患者固定精度を高める必要がある。IMRT は複雑な放射線治療技術であるため、これを安全に実施するには、医療物理士などの専門職による品質管理体制が重要である。

c) 定位放射線治療 (SBRT、SRS)
放射線治療の欠点の一つに、治療時間が長いことがある。定位放射線治療とは、3 次元的に小さなターゲットを正確に設定し、1 回あるいは数回で照射する方法である。線量を集中させ 3 次元的に多くの方角から照射を行うことによって、周囲の正常組織への有害事象を気にせずに比較的多い線量を照射できる。少ない負担で 1 回あるいは数回でがん治療を終了する定位照射は、今後の体に優しいがん治療の一つのモデルとも言える。早期肺癌がんに関しては、我が国から多くの先駆的研究が報告されており、局所制御率は手術に匹敵している。リニアックの定位照射機能により施行する以外に、脳の定位照射専用装置、体幹部にも適応する定位照射専用機があり、これらの精度は更に向上してきている。体幹部腫瘍に IGRT を付加した定位照射をどのように取り入れるかが今後の研究課題である。

d) 画像誘導小線源治療
小線源治療とは、小線源（放射性同位元素）を組織内や腔内に挿入し、直接的に腫瘍に対して照射する方法で、放射線治療が開始された当時からの歴史を持つ。これに CT などの画像を用いた治療計画により、線量分布の最適化をはかるのが画像誘導小線源治療である。子宮頸がんに対する腔内照射、前立腺がんに対する組織内照射などで行なわれるようになってきた。しかし、いまだ施行施設は限定されており、外部照射との合成での線量評価などは今後の課題である。
4-2-2 放射線生物学

a）放射線作用機序の解明

ゲノム生物学や細胞生物学的手法を用いた生物学研究により、放射線によるがん治療作用のメカニズムの解明を通じて、より有効な放射線治療を確立する研究が行われている。がん細胞に対する放射線の効果は、放射線そのものの性質、がん組織の体内での深さや大きさの他、がんの種類など様々な要素によって変わってくる。これらの組み合わせで変わるがん細胞と正常組織に対する生物学的な効果を最適化することで、がん組織に対しては強力で、正常組織へは有害事象の少ない治療の条件を見つけることができる。放射線治療にはならないが放射線発がんのリスクもあることから、治療効果の異なる腫瘍や転移がんのゲノム構造と遺伝子発現の関連性を調べることにより、治療効果が低い腫瘍に特徴的な放射線応答の仕組みを明らかにし、放射線耐性を克服することができる。また、被照射細胞内で生成する活性酸素種とそれに続く生体応答の特徴を、個人差や腫瘍ゲノムの特徴とともに解析し、放射線治療への抗酸化剤併用の影響を評価する事も可能である。分子生物学的解析により、放射線感受性にかかわる遺伝子レベルの機序を解明することが課題である。

b）線量分割

放射線治療の線量分割は、放射線生物学の理論を背景にした歴史的経験により、1回1.8〜2.0 Gyが通常分割法として広く用いられていた。これに対して、正常組織への影響を小さくするため、1回の線量を減らして回数を多くし、総線量を増加させる多分割照射法が1980年代から行われたが、施行の煩雑さなどにより現代では小細胞肺癌などが適応が限定されている。一方、治療期間短縮の目的で、1回の線量を増やして回数を少なくし、総線量を減少させる寡分割照射法が、早期乳がんに対する乳房温存術後の乳房照射、前立腺がんに対する根治照射などで行われているようになった。高精度化した現代の照射法に応じた最適な線量分割は、重要な研究課題である。

c）環境標的治療

通常の放射線治療では、低酸素、低栄養細胞の放射線感受性は低下している。これらの細胞環境に着目した治療研究が生物学の分野から始まった。細胞環境と放射線治療効果の関係は、古くから研究されているがいまだ解明されていない課題である。

4-2-3 併用療法による治療効果増強

a）化学放射線療法

化学療法剤は一種の放射線増感剤でもあり、化学療法の併用により局所の抗腫瘍効果が増強されると期待される。また、ミクロレベルでの転移が抑制される効果も期待できるため、放射線治療単独で制御が困難な進行がんでは一般的となっている。脳腫瘍、頭頸部がん、食道がん、肺がん、脇臓がん、子宮頸がんなどの進行がんで広く行
われる。化学療法を併用することで効果が高まるメカニズムは、DNA損傷の増強、亜致死損傷からの回復阻害、放射線感受性細胞周期への同期、放射線抵抗性的低酸素細胞への効果、細胞増殖の抑制などが考えられる。効果が良くなる反面、粘膜反応、骨髄抑制、肺臓炎などの有害事象が増える中で、これらの軽減対策が今後の課題である。さらに、最適な薬剤と時期、投与量などについての研究が引き続き必要である。

b) 内分泌療法との併用

乳がん、前立腺がんはホルモン依存性に増殖するため、内分泌療法で女性ホルモン、男性ホルモンを抑えることで、がんの増殖が抑制される。局所進行前立腺がんでは、内分泌療法を数か月先行させ、PSA値が正常化してから放射線療法を行う方が効果が良いと報告されている。反面、内分泌療法による心臓血管疾患の増加やQOLの低下の報告もある。乳がんでは内分泌療法と放射線療法の同時併用で、放射線療法の効果が低下して、肺炎などの有害事象が増えるとの報告もある。最適な内分泌療法との併用法は、今後さらに検討が必要である。

c) 分子標的薬剤の併用

分子標的薬剤が臨床で広く用いられるようになり、HER2過剰発現の乳がんではトラスツマブ、ラパチニブ、非小細胞肺がんではゲフィニチブ、タルセバ、ベバジマブが用いられること、放射線療法との併用作用について検討する必要が生じている。悪性リンバ腫ではリツキシマブと放射線同位元素による内用療法と組み合わせたイブリスモマブや放射線療法併用での高い有効性が報告されている。分子標的薬剤と放射線療法の同時併用で、有効性の増強と共に肺炎などの有害事象が増えるとの報告もあり、今後の研究が待たれる。

d) 外科治療との併用

手術との組み合わせ時期により、術前照射、術中照射、術後照射に分類される。術前照射は、腫瘍を小さくしてから手術する目的で行うが、今日では化学療法を行うことが多くになっている。術中照射は、比較的放射線感受性が低く、外部照射では周囲の正常組織への影響が問題となる膀胱がん、骨肉腫、脊髄腫瘍などで行われている。術後照射は、早期乳がんにおける乳房温存療法の乳房照射などが代表である。いずれも手術が主体で法線療法は補助療法として用いられるが、時期、線量、線量分割などの最適化研究が必要である。また、放射線治療後の残存病巣や局所再発に対する救済手術も重要であり、外科医との一層の協力体制の構築と放射線治療に対する理解向上の必要性がある。

e) 免疫療法、がんワクチンの併用

樹状細胞を用いたがんワクチン療法などの免疫細胞療法、細胞を使わない免疫療法としてのがんペプチドワクチン療法などの臨床試験が進んでおり、これらと放射線治
療の併用についても研究が必要である。免疫を司っているリンパ球は体内の細胞で最も放射線感受性が高く、放射線療法によりリンパ球減少が起こるが、免疫療法が免疫状態を改善できるのか、放射線療法による影響に打ち勝つ方法は未だ研究段階である。

f) 内用療法
内用療法は外部照射に比べ、低線量率かつ持続照射となるため生物学的効果が異なる。利点は、がん病変の部位や個数にかかわらず治療できることで、多発骨転移や肺転移などで有効である。我が国では、分化型甲状腺がん、有痛性多発性骨転移、悪性リンパ腫、神経内分泌腫瘍などの医薬品が使用可能である。

有用な治療法であるが、対象となる患者数が必ずしも多くないこと、使用に伴う手続きの煩雑さや設備投資に対応できなかった結果、行える疾患や施設が限られている。しかし今後は、分子標的薬などとの組み合わせで、今後の放射線治療の一大分野としての展開が期待されている。

4-2-4 粒子線治療
a) 陽子線治療
陽子線の生物学的効果比 (Relative Biological Effectiveness : RBE) は X 線とほぼ同等で、低 LET であるがブラッグピークを形成する。RBE がX線とほぼ等であるため、従来のX線治療と同様に施行が可能である。現在では眼の悪性黑色腫、頭蓋底腫瘍、頭頸部がん、肺がん、肝細胞がん、前立腺がんなどで臨床使用されており、最も多く使用されている粒子線である。多くの良好な成績が報告されているが、例えば眼の悪性黑色腫では、局所制御率96～97%、5年生存率80～88%との報告がある。

2012年12月現在稼働中の我が国の陽子線治療施設は7か所ある。

b) 重粒子線治療
重粒子線は、シャープなブラッグピークと高い生物効果の両者を兼ね備えるという特徴から、がん治療に有効な放射線である。特徴としては、亜致死損傷からの回復が殆ど見られないこと、細胞周期による影響を受けないこと、酸素濃度による感受性の差が少ないこと等が挙げられる。

主な適応疾患は、前立腺がん、肺がん、肝がん、骨軟部腫瘍、直腸がん術後局所再発、頭頸部腫瘍（扁平上皮がん以外）、肝がん、局所進行子宮頸がん、眼腫瘍、頭蓋底腫瘍などである。生物学的効果が高いためX線では根治が困難であった骨肉腫などの骨・軟部腫瘍、直腸がん術後局所再発、頭頸部領域の腺がん系腫瘍、悪性黑色腫などにも良い成績を挙げており、注目される。

照射期間の短縮も可能で、I期の非小細胞肺がんでは1回、肝がんでは2回などの照射も研究的に行われている他、前立腺がんでは3～4週間（12～16回）での治療が可能になっている。

我が国では、1994年から放医研の医療専用加速器（HIMAC）で炭素イオン線治療が開始され、2012年12月現在3施設で治療が行われている。

物理工学の研究者と国内メーカーの技術力により、この分野で日本は諸外国に先ん
じており、更なる成果が期待される。現在の技術的研究課題は、装置の小型化と低コスト化、及び、更なる線量集中精度の追求などである。

従来の拡大ビーム照射法に加え、さらに線量集中性が高く、呼吸同期が可能な3次元高速スキャンニング技術の臨床応用により、従来は治療が難しかった複雑な形の病巣への照射も可能となり、正常組織への線量の低減と有害事象の低減に寄与することが期待される。また高速照射により、重粒子線治療でも IGRT の導入が可能になり、安全に治療照射一回あたりの線量の増加が可能となることから治療期間の更なる短期化も期待される。

現在、治療の最適化と精度の向上に加え、更なる時間短縮と患者の負担軽減を実現するため、放医研において回転ガントリーの開発が進められている。回転ガントリーが導入されることで、多方向照射による線量分布の改善、治療計画や位置決め等を容易にするだけではなく、固定ポート照射では避けられなかった患者回転位置決めの際の臟器移動がないため、照射精度が一層向上するという利点がある。しかし、重粒子（炭素）は陽子に比べ12倍重く、回転ガントリーに搭載する偏向電磁石の必要磁場も当然大きくなることから、重粒子線の回転ガントリーの重量は陽子線の回転ガントリーに比べ3倍程度になることが予想され、実用化に向けた軽量化が大きな開発の課題である。

この回転ガントリーと3次元スキャンニング照射を組み合わせることで、強度変調粒子線治療（Intensity Modulated Particle Therapy：IMPT）が可能となる。IMPTにより腫瘍が重要臟器に近接していても、重要臟器を避けて、腫瘍部に線量を集中心させることができる。

一方臨床では、現在の適用疾患に加え、患者数が多い早期乳がんに対する臨床研究が課題である。また、局所治療である粒子線治療と全身療法である化学療法の併用研究も、長期予後の改善には重要な課題である。

c) ホウ素中性子捕捉療法

ホウ素中性子捕捉療法（Boron Neutron Capture Therapy：BNCT）は、腫瘍内に投与されたホウ素（10B）と、原子炉から発生する中性子との核反応（10B(n, \alpha)7Li）によって発生するα線とリチウム原子核（7Li）を利用して治療方法である。α線とリチウム原子核の飛程は非常に短い（10ミクロン程度。赤血球の大きさが8ミクロン程度）ため、正常細胞の有害事象を押さえて抗腫瘍効果を挙げることができる。

BNCTへの取組は1950年代に米国で開始され、悪性神経線維腫や悪性黑色腫の治療が試みられている。我が国では、京都大学原子炉実験施設、日本原子力研究所東海研究所で研究が行われており、国立がん研究センターをはじめ幾つかの施設で導入が計画されているが、臨床的有用性を高めるためには、利用しやすい中性子発生装置の開発と、腫瘍特異性の高い新しいホウ素化合物の開発が必要である。
4-3 研究の推進方策

4-3-1 教育制度の整備と人材育成の推進

4-1 でも述べたように、放射線治療専門医、医学物理士、放射線治療専門技師、放射線治療専門看護師などの医療者の不足が、日本の放射線治療の普及と高精度化が遅れている一因である。文部科学省がんプロフェッショナル養成プランを契機とした、大学院教育におけるこれら専門家の養成は、文部科学省がんプロフェッショナル養成基盤推進プランに引き継がれ、徐々に人材を輩出しつつある。また、これらとリンクしてがん専門病院や研究施設での、専門家養成を目的とした研修会や教育連携の動きも進んでおり、これらを継続して推進することが重要である。

4-3-2 教育教材の整備
放射線治療に携わる医療従事者の教育に資する教材を開発し、可能なものは世界に紹介する。既に放医研において、医学教育における被ばく医療に関する参考資料の日本語、英語版が作成、公表され、それらのe-learningシステムも開発されている。このような系統的資料の作成を、放射線治療分野の教育機関が教育連携や学術団体を通して行っていく必要がある。

4-3-3 国産治療装置の開発と国際競争力の強化
現在国内で新規に納入されるリニアックはほとんどが海外製である。かつては国内で数社が開発販売していたが、殆どが撤退し、現在は1社のみである。一方、粒子線治療の分野では、国内メーカーのシェアは大きい。粒子線治療装置にかかわる技術開発と製品化を引き続き進めると共に、その開発力と技術力をもってリニアックの市場への再参入も可能と考える。

4-3-4 産学官連携、国際協力・連携
日本には特に粒子線治療分野を中心に、世界をリードする学識と開発力を持った人材があり、技術力の高いメーカーも存在する。これらの知財を展開することによって国内のがん治療レベルを上げ、更に国際協力・連携に展開して日本初の先進治療技術を世界に広げていくシステムを構築する必要がある。

4-3-5 放射線治療の個人履歴リポジトリ
放射線治療に関する照射野、線量、放射線の種類、線量分布などのデータを個人単位で安全に保管し、いつでも個人や医療機関からの問合せに応じて提供できる仕組みが、「放射線治療の個人履歴リポジトリ」である。
今後の高齢化社会では、悪性腫瘍（がん）の罹患率が増加し、国民一人が複数のがんにかかることがまれではなくなり、一人が複数回、別のがんにかかる事が予想される。すでに放射線治療を受けた患者は、2回目、3回目の放射線治療を受ける場合、前回の放射線治療がどのような部位に、どのくらいの線量が照射されているかを把握する事が、放射線治療の副作用を低減する上で必要である。この前回のデータが入手できないと、非常に危険な状況になる。
現在の医療では、このような重要な情報である放射線治療のデータを保管する期間は5年間であり、それ以上の保管義務は各医療機関にはない。放医研を始め放射線治療データが重要と認識している医療機関では永久保存されている場合もあるが、今後の高齢化社会に備えて、すべての放射線治療のデータを地方規模あるいは国家規模で保管し、患者が2回目以降の放射線治療を受けるときには、適切な情報を提供する仕組みが必要である。これは、小児がんのような、長期にわたる追跡が必要で、多重がんの発生の可能性があるがんの場合、特に重視するべきである。

このようなシステムは、一種のがん登録データベースにもなり、また、医療被ばくのデータベースとしても利用することが可能となる。尚、システムの構築については医療被ばく分野の推進方策に別途項目を設けて後述する。
5. 医療被ばく分野における国内外の情勢、研究課題の整理及び研究の推進方策
5-1 国内外の情勢
5-1-1 国際機関
原子放射線の影響に関する国連科学委員会（UNSCAR）2008年報告書に示されている通り、世界的に放射線の医学利用は増加傾向にある。それに伴い、防護に対する活動も、国際機関・各国で積極的に進められている。例えば、国際放射線防護委員会（ICRP）は、2007年新勧告で医療放射線を一つの章として取り上げている。国際原子力機関（IAEA）は、2002年から国際行動計画（International Action Plan）を進めており、改訂中のBasic Safety Standards（BSS）では、ICRP勧告を基にした医療放射線防護に関する記述がある。また、2009年には、患者個人の放射線診療履歴（診療種類・線量）を追跡可能なシステムの構築を目指すプロジェクト“Smart Card/SmartRadTrack project”を立ち上げた。WHOは、2008年から“WHO Global Initiative on Radiation Safety in Healthcare Settings”として、医療放射線の安全利用の推進活動を進めていく。5-1-2 海外諸国
ICRPがこれまで発表してきた医療放射線防護体系は、実際に各国の防護関連規制法令に取り入れられている。具体的には、正当化におけるリファラルガイドラインの利用、最適化では診断参考レベル（DRL）および線量拘束値の利用が挙げられる。特に、診断参考レベルについては、EUの欧州指令（Council Directive）のCouncil Directive 97/43/Euratomにおいて、診断参考レベルの確立と使用が加盟国に求められている。実際に診断参考レベルは欧米諸国の多くの国々で取り入れられており、それらによる線量低減の効果も報告されている。また、海外では医学物理士が専門資格として認められ、診断・治療・核医学の各分野において防護の実践に重要な役割を担っている。IAEAのBSSなどでも、その重要性が強調されている。患者の線量について、米国では、米国放射線医学会（ACR）がDose Index Registry（DIR）として、医療機関から線量を自動的に収集する仕組みが構築されている。また、カリフォルニア州では、2012年7月に病院及び診療所に対してX線CT検査の被ばく線量を記録することを義務づける州法が定められる等、取組が進んでいる。
5-1-3 国内情勢
日本の放射線防護関連法令は、1990年のICRP勧告に基づいている。2011年1月に、放射線審議会基本部会は、「国際放射線防護委員会（ICPR）2007年勧告（Publ. 103）の国内制度等への取入れについて」の第二次中間報告を出した。その中で、医療放射線関連として、「医学的手法の正当化、診断参考レベル、線量拘束値、品質保証、放射線治療における事故防止などの主要な項目については、医療被ばくの対象者に対する防護の基本的事項として、必要に応じて、国内法令に取入れていくべきである。また、診断参考レベル等の具体的な数値規準は、医療及び放射線防護に精通する関係省庁と関連学会等の関係機関により共同で設定されることが適切である。」との記述がある。
上記報告に示されている通り、現在の日本の放射線防護関係法令には診断参考レベルが取り入れられていない。また、医学物理士も国家資格になっていない（医学物理士としての仕事は、日本では放射線治療の分野のみである）。更に、診療放射線技師や放射線専門医を除き、医師・看護師等の放射線診療従事者の放射線防護に関する教育訓練も、不十分と言わざるを得ない状況である。

5-1-4 放射線診療のリスク
画像診断技術の高度化に伴い、様々な手法の放射線診療が行われるようになってきた。それに伴い、被ばくのリスクも問題として取り上げられてきている。例えば、X線CTでは、perfusion CT検査で過剰照射による確定的影響の発生事例が報告されている。放射線治療では、治療成績の向上により治療者の長期生存が可能になることで、二次がんのリスクが認識されるようになってきた。また、国内で放射線治療における過剰照射や、核医学診断における放射性医薬品の過剰投与が起こっている。更に、福島第一原子力発電所事故後、放射線被ばくを心配するあまり、X線CT検査など放射線診断を拒否する患者も出てきており、適切な線量及びリスク評価と、リスクコミュニケーションが切実に求められる状況になってきた。

5-1-5 職業被ばく
職業被ばくは一般的に適切に管理されており、線量限度を超えることはほとんどない。しかしながら、例えばIVR従事者等の一部に比較的高い被ばくや限度を超える従事者も存在する。ICRPは、2011年4月に”Statement on Tissue Reactions”として、目の水晶体の等価線量限度を5年平均で20mSv、1年で最大50mSvに引き下げるべきであるとの声明を出した。これが導入されることにより、職業被ばくの管理も影響を受ける可能性があることから、国際放射線防護学会（IRPA）は、「改訂された水晶体の線量限度に関するICRP勧告の実施に係るタスクグループ」を立ち上げ、議論を始めている。

5-1-6 情報の一元化
先述のように、海外では医療放射線防護に向けた医療被ばく情報のレジストリ構築の動きがある。放射線診療情報（種別・線量）を含んだデータは、医療被ばくの正規化・最適化の実施に有用な情報を得ることが可能である。放射線診療履歴のレジストリ構築と、診断画像などの放射線診療情報の共有化が望まれる。

5-2 研究課題の整理
医療被ばくの適切な防護のためには、まず、放射線診療の実態を正確に把握し、線量とリスクの評価を行うことが必要である。それらのデータに基づき、被ばくの合理的な低減が進められる。特に、放射線診療情報の適切な利用は高い効果が期待される。
5-2-1 放射線診療の実態把握

放射線診療の実態として、放射線診断・放射線治療・核医学のモダリティ毎に種類・実施頻度・年次推移の情報が必要である。また、年齢・性別等の患者のデータも、被ばくの評価をするに重要である。これらの情報を得るため、長年放医研において、郵送法による実態調査が行われてきたが、近年調査票の回収率が低下し、解釈に十分なデータ収集が困難になってきている。しかしながら、放射線診療技術の高度化により、新しい画像診断技術や被ばく線量低減技術が診療現場に導入されてきており、実態把握は継続して行う必要があることから、合理的にデータを収集するシステムが必要である。残念ながら現在我が国には、システマティックにこれらの情報を収集・解析する包括的なシステムがないことから、厚生労働省をはじめ中央省庁の主導により、関連する法整備等に加え、関連学会・団体などを含めたシステムの構築が早急に行われる必要がある。

5-2-2 医療被ばくの線量・リスク評価

放射線診療を受ける患者の線量は、モダリティや個別の照射条件設定によって大きな違いがある。これらの被ばく線量は、人体形状を高度に模擬した物理ファントムと線量計素子を用いた測定、あるいは数学ファントム等のモンテカルロシミュレーション計算等により推定されてきた。しかし、実際の診療では、種類や条件設定の数が多く、測定および計算による推定データはまだ十分に得られていない。医療被ばくによるリスク評価のためには、患者がうける線量の情報が必要であるが、先述の通り、現状では評価が十分ではない。線量のレベルが低線量（確率的影響）から高線量（確定的影響）にわたることもあり、リスク評価は容易ではない。実際、医療被ばくのリスクについては多くの議論がなされているものの、具体的な定量的リスク評価が報告されるには至っていない。放射線診療を受けた患者のフォローアップも重要であり、適切に実施可能な体制作りが必要である。また、医療被ばくはほぼ全国民が対象となるため、適切なリスクコミュニケーションの技術も求められる。

5-2-3 医療被ばくの合理的低減

医療被ばくの合理的低減は、適切な正当化と最適化によって行なわれる。正当化は、放射線診療の便益と被ばくのリスクを比較し、便益がリスクを上回るときに放射線を用いるという判断である。実際の医療では、ガイドライン等の使用が有用である。最適化は、合理的に達成しうる限りできるだけ低い線量を用いるという考え方の元に、適切な照射を行うことである。医療被ばくの最適化では、患者の被ばくには診断参考レベルを、患者の介護者・介助者及び生物医学研究志願者の被ばくに対しては、線量拘束値の適切な設定および利用によってなされる。しかしながら、多くの国々で用いられている診断参考レベルは、我が国にはまだ導入されていない。被ばく線量の合理的低減に向けて、早急に確立すべき極めて重要な課題である。医療被ばくの観点から、モダリティ毎に照射される特定の臓器の防護や、小児患者の防護、PET/CT等の複合診断など新技術（モダリティ）に対し、特別な防護の対策が必要である。
放射線診療情報の有効活用

現代において一人の患者が複数回の放射線診療を受けることは特別なことではなくなっているが、一方で同一の患者がX線CTなどの検査を数十回受けた事例も報告されている。これは、患者毎の放射線診断の履歴を医療機関間で共有できていないことが原因と考えられる。現在IAEAで検討が行われているSmart Card/SmartRadTrack projectは、まだ具体的な方法ではなく概念として示されているだけであるが、放射線診断（X線診断・核医学・IVR）の対象となっている。施設は限定されているものの、既に試験的に進めている国もある。医療被ばくに対する防護上、個人の放射線診断履歴の情報は極めて有用であり、共通の追跡システムの確立が期待される。その確立に向けて、我が国の貢献も強く求められている。

研究の推進方策

放射線診療の実態把握

放射線診療情報を効率的かつ総合的に収集可能なシステムを構築する必要がある。そのためには、まずは放射線診療の実態に関する既存のデータを有効的に活用することが合理的である。そこで、保険点数など行政が有している放射線診療情報など、収集されているデータを利用する方法を検討する。また、検診など保険点数から外れている情報もあることから、既存データを補足する必要がある。そこで、関係団体・関係者の協力を得ながら、医療被ばくに関する新たな情報を収集するシステムを構築していく。そのために、医療被ばく研究情報ネットワーク（J-RIME）など関連団体を中心に、オーガニックとして分野毎に放射線診療の実態に関する情報を得る体制を構築する。得られた情報をデータベース化し、UNSCEAR等国際機関への情報提供にも対応を可能にする。また、時とともに状況が変わることに対応すべく、診断参考レベルの更新にも寄与することから、定期的にデータを更新できるようなシステムとする。これは、具体的に、早急に取り組むべき重要な課題である。

医療被ばくの線量・リスク評価

線量計による測定値及びコンピュータプログラムによる計算値に基づき、各モダリティに対応した医療被ばく線量を評価することが可能なソフトウェアを開発・運用し、防護に資する情報を提供する。また、リスク評価の基準となる照射条件毎の臓器吸収線量の詳細な評価と、診断参考レベル評価に有用な簡便な線量指標の評価を行う。リスク評価では、リスクの評価に適切な医療被ばくにおける線量指標を開発、それらに基づいた評価を行う。更に、各ステークホルダーを対象としたリスクコミュニケーションのツールを開発し、医療の現場で利用可能にする。

医療被ばくの合理的低減

正当化では、種々の放射線診療の手法毎にガイドラインの整備を進める。これには、関連組織が作成した既存のものをデータベース化することも含まれる。また、後述の放射線診療履歴追跡システムを構築し、医療現場で有効的に利用される環境を整備す
カラー。最適化では、各放射線診療の実態調査・線量評価を基に、診断参考レベルを確立する。小児患者には、年齢及び体格を考慮した適切な値を提示する。また、モダリティ毎に、照射範囲に入る高感受性臓器の合理的な防護手法を開発する。

5-3-4 放射線診療情報の有効活用

標準規格である DICOM などを利用して、医療施設内の放射線診療に関する情報を、現場における負担・支障が少ない自動的な手法で収集し、データベース化を可能にするシステムを構築する。これらのデータを元に、個々の患者が受ける被ばく線量を評価し、放射線診断の履歴を追跡可能なシステムを確立する。また、放射線診断により生成された医療画像をデータベース化することにより、撮影時期に応じ診断に利用可能な画像を提供可能なシステムの概念設計及び基盤の構築を行う。さらに、これを放射線治療に関する情報も収集・分析できるシステムへと発展させ、医療全体を網羅した統合型放射線診療情報システムにする。
6. 各分野の研究活動を推進するための共通課題と解決策

6-1 人材育成

今日の医学は高度に専門化かつ細分化が進み、専門医に加え専門性を有するコメディカル人材の育成が求められている。また医学研究においては、基礎から臨床への橋渡し研究（トランスレーショナル・リサーチ）に携わる人材が不足しており、研究成果の臨床応用が欧米に比べ遅れをとる一因となっているとの指摘がある。

放射線医学分野においては、最先端技術を応用した様々なモダリティが臨床現場で利用されイノベーションのスピードも非常に速いことから、医学物理士をはじめとした医療ニーズに応えられる高度な理工系者研究・技術者の育成が急務である。

最近では、文部科学省のがんプロフェッショナル養成基盤推進プラン等において、学部、大学あるいは職種の枠を超えた人材育成の試みが時限的に行われつつある。しかしながら臨床現場のニーズを充足し、また国際競争に打ち勝つ技術開発を行うには、より系統的かつ継続的な人材育成プログラムの創設が必要であり、大学のみならず様々な資源やシーズを有する研究機関に対する戦略的な取組みへの期待は増大している。

また、有能な人材が育つには、その出口として相応の雇用環境と処遇が求められる。医療職と同様に、こうした人材に対しても国家資格化を含めた身分やポストの確立あるいは資源配分等の措置が必要不可欠である。

6-2 規制緩和の促進

他の分野と異なり臨床に関わる医学研究では様々な規制が立ちはだかる。とりわけ放射線医学領域で不可欠な医療機器は、医薬品と同様に薬事法により厳しい規制がなされてきた。そもそも医療機器は、医薬品とは異なり、種類が非常に多岐にわたり数次の改良がなされる場合も多く、さらにその有効性や安全性は使用者の技能や日常の品質管理に負うところが大である。しかしながら、薬事法上承認された医療機器のR＆Dは原則として認められておらず、新たな承認申請や変更申請手続きが必要となる。また審査に係る時間的、経済的コストも少なくなく、優れた技術が確立しても上市に到るまでに様々な壁が存在し、いわゆる死の谷あるいはデバイスラグという状況を招いている。

こうした問題を解決するには、諸外国で実施されているように、医療機器をその特性に合わせ、薬事とは切り離して取り扱うことが必要である。最近、国會でも医療機器に係る法制化へ向けた議論が始まりつつある。また医療機器開発のための特区制度を創設するなど、国際競争に打ち勝つには国を挙げた取組が求められる。

放射線医療機器においてもその有効性や安全性を担保することの重要性は言うまでもないが、臨床研究等によりそのエビデンスが確立している場合には、透明性を確保した上で承認審査をより簡素化するなどして、最先端技術が臨床現場に直結できるよう抜本的な改革が必要である。また現在、薬事審査は医薬品医療機器総合機構が一元的に担っているが、前節で述べた専門人材や学界によるビアレビューの活用、あるいは一定の基準を満たす機関には未承認機器の臨床応用を認めるなど、形式にとらわれない弾力的運用も検討されてしかるべきである。
6-3 標準化の推進

研究成果を臨床応用しさらに世の中に普及させて行く上で、標準化は一つの重要なキーワードである。

臨床研究は研究プロトコールに沿って実施されるが、これを標準化し多施設あるいは国際的に展開・共有すれば、短期間で効率よく多くのデータが得られエビデンスの確立を促進することができる。また標準化を主導した機関のプレゼンスは自ずと向上する。さらに臨床研究の結果が良ければ、そのプロトコールは医療の現場で標準治療法として根付いていく。

また放射線には諸刃の剣という特性がある。特に高線量照射を伴う医学利用においては被ばく管理や装置の品質管理が重要であり、標準となるガイドライン等の確立が急務である。

一方、工学や産業の分野では、標準化により自由な競争を阻害する非関税障壁を排除し利益をもたらすことが期待される。例えば、現在、国際電気標準会議（IEC）では、我が国が世界をリードする粒子線治療装置について IEC 規格化の議論がなされているが、一端、国際規格が制定されると、各国の薬事審査はこの規格に基づくことになり、また政府調達の場合、国際規格に準拠しない製品は対象から除外される。したがって日本の技術が国際規格に採用されることは、貿易立国の我が国が厳しい国際競争の中で生き残りを図る上で鍵となる。

しかしながら、こうした標準化活動に関わる人材やそれを支援する環境が十分確保されているとは言い難い。目先の研究成果だけでなくこうした分野への地道な投資は、出口を見据えた今後の方策を立てる上で極めて重要である。

6-4 研究環境の整備

医学研究を進める上では、少子高齢化が進む中、次世代を担う研究者・技術者・研究を支援する人材の確保も重要な問題である。若手研究者をはじめとする人材のキャリアパス、女性研究者等の活躍の促進のための研究環境の整備が欠かせない。そのためには、人事交流の促進、海外留学の促進、柔軟な勤務体系や支援制度の推進と共に、その人事評価体制の構築が必要である。また、研究に携わる者の倫理教育、法令遵守、利益相反、産学官連携、技術移転等や研究成果の管理活用の上で総合支援体制が必要である。さらに、日本の国際競争力を上げるための１つの方策として、自由な研究を推進し、研究を活かすための知財戦略も必要となる。そのためには研究者と共に研究活動に係わる企画・マネジメント・成果活用促進を行う人材の活用及び育成も必要である。
7. 独立行政法人放射線医学総合研究所（放医研）の担うべき役割

放医研では、放射線と人々の健康に関わる研究開発に総合的に取り組む国内で唯一の機関として、放射線による生体影響に関する基礎的な研究から、核医学による生体のイメージング、放射線を利用した診断・治療に関する臨床研究に至る総合的な研究・開発が実施され、それらを担う医学、薬学、生物学、化学、物理工学、情報工学など幅広い分野の研究者、技術者を有している。加えて、臨床研究のプラットフォームとしての病院や重粒子線治療装置、放射性薬剤製造のためのサイクロトロン、各種および各強度の放射線発生・照射装置、動物実験施設などを持っている。

これらの特長を活かして、診断、核医学、治療の各分野の研究を有機的に融合しながら推進していくことに加えて、前述してきた放射線の医学利用研究分野における課題や推進方策に対して、特に以下のような役割を果たしていくことが期待される。

7-1 粒子線治療の普及、展開のための研究開発の推進
7-1-1 情報発信

放医研では、世界に先駆けて重粒子線を用いたがん治療の有用性が立証されてきた。その成果は、国内では普及型重粒子線がん治療施設の実現、国外においては施設建設やその計画を誘引する原動力になっている。今後、海外の重粒子線がん治療施設機関と協力あるいは競争し、重粒子線がん治療の更なるレベルアップを図ることになろう。こうした状況を踏まえ、重粒子線がん治療における適応部位の更なる拡大を目指すとともに、適応の明確化、標準化を推進することが期待される。最終的には重粒子線がん治療を標準的ながん治療の選択肢の一つとして国民に認知されるよう努めなければならない。

さらに放医研は基礎研究分野に多くの生物系研究者を有しており、生物学研究の横の広がりと共に臨床との接点を持ち、ゲノム生物学や細胞生物学的手法を用いた粒子線生物学研究により粒子線によるがん治療作用のメカニズムの解明を通じて、粒子線治療の高度化や粒子線がん治療に資する情報提供を推進していくことが求められる。

7-1-2 装置の小型化、低価格化

重粒子線治療では、この治療が普及するために鍵となる装置の小型化、低価格化、小型ガントリーシステムの開発、および設備・装置の標準化に更なる努力を期待したい。

7-1-3 専門家の育成

重粒子線がん治療を国内外に普及するための明確なビジョンと戦略の下、関係機関と連携し、その実践に不可欠な、国内外機関の研究者及び医療関係者を対象とした専門家の育成にも積極的に取り組むことが求められる。
7-2 医療被ばくの線量・リスク評価及び防護関連情報収集体制の構築

医療被ばくに関する放射線診療の実態データおよび線量データについては、これまで放医研において収集・蓄積されてきたが、5-3-1で述べたように、今後、線量・リスク評価を推進すると共に、国内の医療被ばくに関する合理的・包括的な情報収集体制を構築・運用し、データベース化することで、正当化及び最適化に資するデータを国内外に提供する役割が期待される。また、技術の進展に伴い、これらの役割を継続し、新たな放射線診療技術による医療被ばくに対する放射線防護にも貢献することが求められる。分野別には、放射線診断における診断参考レベル設定や放射線診療履歴追跡システムの構築、放射線治療では最新治療に応じた線量・リスク評価、核医学では一般核医学検査から内用療法を含めた線量・リスク評価、そしてこれらエビデンスに基づく合理的防護手法を提示する役割を担うことを期待したい。

7-3 標準化の推進

重粒子線がん治療技術の普及、展開のための標準プロトコールの確立や装置の標準化、医療被ばくの正当化の判断や合理的低減のためのガイドラインの標準化に加えて、次のような標準化への取り組みも期待される。

7-3-1 放射線治療の高精度化

放射線治療の高精度化を積極的に推進することが望まれる。特に、IAEAや国家標準に係る関連機関と協調し、放射線診療機器の線量トレーサビリティ体系の中で中心的役割を担うべきと考える。

7-3-2 プローブ製造技術の標準化

プローブの製造、品質評価に関するガイドラインの整備や、それに基づいた専門機関による査察、施設認証などの標準化を推進するために、関連学会を含むオールジャパン体制の構築が必須であり、そのために放医研が先端的な役割を果たすことが期待される。

7-3-3 国際標準化への貢献

放射線診療機器の研究と開発が、国際標準化機構(ISO)、国際電気標準会議(IEC)等における放射線診療の国際規格策定に貢献し、国際競争力強化に資する戦略的な取り組みが期待される。

7-4 産学官連携による機器・装置開発の推進

日本は、特に粒子線治療分野を中心に世界をリードしている一方、核医学機器開発においては大学や研究機関等において、長い研究開発経験と高い要素技術を有しているにもかかわらず、実用化の点では海外のメーカーに大きく後れを取っている。臨床機器の
開発は、技術的にも経済的にも単一施設で達成することは困難であり、産学官連携の体制をもって、これら機器メーカー、大学、研究機関の有する高い技術力を融合し、さらに高度化することによって、この課題を克服できるものと期待される。

特に重粒子線加速器、PET等の医療機器、プローブ等の研究開発については、研究開発のプラットフォームと幅広い分野の研究者、技術者を有する放医研が、産学官連携の中心となって、日本発の医療機器・装置・医薬品の研究開発を先導していくことが期待される。
放射線の医学利用研究に関する検討会の構成員及び会議開催実績

1. 放射線の医学利用研究に関する検討会の構成員
 遠藤 啓吾 京都医療科学大学 学長
 ◎垣添 忠生 公益財団法人日本对がん協会 会長
 佐治 英郎 京都大学薬学部 部長
 鈴木 厚人 高エネルギー加速器研究機構 機構長
 中村 仁信 医療法人友紘会彩都友紘会病院 病院長
 丹羽 太貫 京都大学 名誉教授
 山田 章吾 杜の都産業保健会 理事長
 （◎会長）

2. 放射線の医学利用研究に関する検討会の会議開催実績
 放射線の医学利用研究に関する検討会第1回会合（平成24年7月25日）
 放射線の医学利用研究に関する検討会第2回会合（平成24年9月26日）
 放射線の医学利用研究に関する検討会第3回会合（平成25年1月29日）
放射線医学利用研究分野における研究推進方策

－放射線の医学利用研究に関する検討会 報告書－
平成 25 年 3 月 29 日 報告

発 行 独立行政法人放射線医学総合研究所
 「放射線の医学利用研究に関する検討会」

事務局 独立行政法人放射線医学総合研究所
 企画部 及び 重粒子医科学センター、
 分子イメージング研究センター

連絡先 〒263-8555
 千葉市稲毛区穴川 4-9-1
 独立行政法人放射線医学総合研究所
 企画部
 TEL:043-206-3022 FAX:043-256-9616

※本報告書は、独立行政法人放射線医学総合研究所の諮問機関である、「放射線の医学利用研究に関する検討会」による報告書である。