Beyond ITER: Neutral beams for DEMO

Roy McAdams

Plasma Heating Unit
Tokamak and Neutral Beam Operations

ICIS 2013, Chiba, Japan
10th September 2013
Introduction

- DEMO is the next large fusion facility after ITER
- DEMO will link a fusion source with electricity generation.
 - it will solve the technical problems of running a power plant
- Building of DEMO is *most likely* determined by the success of ITER – specifically operation at Q=10!
- Use of neutral beam injection on DEMO is *most likely* determined by success of neutral beam injection on ITER!
- Neutral beams for DEMO will *probably* incorporate many features not in use on ITER
- This talk will describe some of the physics and technology issues which must be addressed for neutral beams on DEMO
European Fusion Roadmap

1. Plasma operation
 - Inductive
 - Steady state regimes
 - Medium Sized Tokamak
 - ITER Q = 10
 - ITER steady state

2. Heat exhaust
 - Baseline strategy
 - Advanced configuration and materials
 - Medium Sized Tokamak, linear plasma devices and Divertor Tokamak Test Facility (DTT)
 - ITER Q = 10

3. Materials
 - Early Neutron Source

4. Tritium breeding
 - ITER TBM programme
 - Parallel Blanket Concepts
 - Chinese Fusion Engineering Testing Reactor (CFTR) and Fusion Neutron Science (FNS) facility (US)
 - ITER Q = 10

5. Safety

6. DEMO
 - Components Design and Engineering Design
 - Construction
 - Operation

Timeline:
- 2010
- 2020
- 2030
- 2040
- 2050
Next step in fusion

International Tokamak Experimental Reactor (ITER)

First sustained burning plasma

BASIC PARAMETERS:

- Plasma Major Radius 6.2m
- Plasma Minor Radius 2.0m
- Plasma Current 15MA
- Toroidal Field on axis 5.3T
- Fusion Power 500MW
- Burn Flat Top >400s
- Plasma volume ~840m3
- Power Amplification Q>10

Cost is > 14 Billion Euro
First plasma – 2020
D-T campaign - 2027

Neutral beam requirement

Heating: 2 x 1MeV, 40A D$^-$ ⇒ 17MW of D0 injected into plasma per injector (3600s)
Diagnostics: 1 x 100keV, 60A H$, \sim$ 3MW of H0
ITER Beamline

- Heating beam parameters
 - D^-
 - Energy 1MeV
 - Accelerated current 40A
 - Gas neutraliser
 - Injected power 17MW

- Accelerator
 - ~10MW of power dumped in accelerator
 - ~700kW of electrons exits accelerator
 - ~900kW of backstreaming positive ions

- Extensive development programme with test stands operating and being built
 - see talks/posters at this meeting
DEMO options

“Pulsed” – Main option

DEMO 1A

- Major /minor radius - 9/2.49m
- Plasma current - 16.8MA
- Toroidal field - 6.5T
- $<T_e> - 12.9$keV, $<n_e> - 9.3 \times 10^{19} m^{-3}$
- Current drive $\sim 0.35 \times 10^{20} \text{AW}^{-1}\text{m}^{-2}$
- Neutral beam energy - 1MeV
- Neutral beam power - 100/50MW
- Pulse length ~ 2hrs
- Net electrical power ~ 500MW

Snapshot as of July 2013 - likely to change!

Courtesy R Kemp

“Steady state” – Background option

DEMO 2

- Major /minor radius – 8.1/2.99m
- Plasma current – 19.85MA
- Toroidal field – 5.0T
- $<T_e> - 15.5$keV, $<n_e> - 7.7 \times 10^{19} m^{-3}$
- Current drive $\sim 0.35 \times 10^{20} \text{AW}^{-1}\text{m}^{-2}$
- Neutral beam energy - 1MeV
- Neutral beam power - 135MW
- Pulse length ~ 300hrs
- Net electrical power ~ 500MW

Courtesy R Kemp

Pulsed” – Main option “Steady state” – Background option
Choice of beam energy

Beam energy choice driven by current drive efficiency and shinethrough limits

DEMO 1 example for a peaked density profile

I Jenkins et al, SOFE (2013)

- **1MeV may be acceptable**
 - Good news for accelerator!
 - ITER experience is very important
 - Power loadings in accelerator and ion source
 - Power supply, HV bushing, HV holdoff in vacuum.....
Energy efficiency requirements

- Recirculating power in a power plant must be kept to a minimum

- For a 2.4GW fusion power reactor
 - 1.56GW electrical out
 - >1/3 (~0.56GW) is recirculating power
 - 300MW for heating and current drive

- Power for neutral beam system
 \[P_{NB} = \frac{P_{CD}}{\eta_{coup}\eta_{conv}\gamma_{CD}} \]

- System studies show for “economic” power
 - \(\eta_{conv}\gamma_{CD} > \sim 0.25 \) with \(\gamma_{CD} \sim 0.45 - 0.6 \)
 - so we require \(\eta_{conv} > \sim 0.45 \)

- DEMO designs assume \(\eta_{conv} = 40\% \)
 - \(\eta_{conv}\gamma_{CD} \sim 0.14 \)

Challenges for NBI on DEMO

Improved wallplug efficiency

• Number of methods proposed
 – improvement in transmitted neutral beam power
 • reduced stripping
 • improvement in divergence
 – improvement in neutralisation efficiency
 • photo-neutraliser
 • plasma neutraliser
 – improvement in use of electrical power
 • energy recovery

• One solution may not be enough in itself
 – technological challenge
 – risk mitigation
Beam halo and transmission

- Beam halo is relatively small in volume sources
- Halo increases with the addition of caesium to the source
- Halo also increases with increasing tank pressure

H de Esch et al

Surrey and Holmes

ITER modelling considers halos of up to 30mrad containing 15% of the beam

Halo formation possibly due to surface produced negative ions, space charge effects and magnetic fields
Beam halo formation

• Compensation of magnetic deflection and space charge effects
Towards 1MeV!

Status

- ITER programmes will provide important data
 - current density
 - beam divergence
 - effects of magnetic fields addressed in accelerator design
 - use of caesium

- Modelling plays an important role due to lack of facilities!
 - 2D and 3D starting to produce results

- Ionic plasma in front of plasma grid

- Virtual cathode in front of plasma grid

Research priorities

- Surface production
 - influence of D⁻ production site on extraction probability and trajectory

- Magnetic field effects

- Production of D⁻ on accelerator grids due to Cs migration and aberrated trajectories

- Space charge effects

- Role of caesium
 - Replacement?
 - Caesium management
Gas neutralisation

- Use of positive ion or negative ion source depends on size and plasma density of fusion device
 - need to penetrate to the core of plasma
 - determines beam energy
 - neutralisation efficiency determined by beam energy

- Gas neutralisation is the usual method

- Improvements in neutralisation can have a big effect on efficiency
Improved neutralisation - photoneutraliser

- Photo-detachment of negative ion beam by laser radiation
- Potential for high degrees of neutralisation
- Lower gas requirement
 - reduced stripping

Laser power requirement

\[P = -\frac{hc}{\lambda} \frac{\ln(1-f)}{\sigma} \sqrt{\frac{2E_b}{M_b}} \frac{w}{G} \]

- \(f \) - degree of neutralisation
- \(\lambda \) - laser wavelength
- \(\sigma \) - photodetachment cross-section
- \(E_b, M_b \) - beam energy and mass
- \(w \) - average beam width
- \(G \) - number of laser passes through ion beam ("gain")

Laser power requirement for \(f=0.95, w=0.25 \text{m} \) and \(G = 500 \)
(M Kovari and B Crowley Fus, Eng. Des. 85 745, 2010)
Laser neutraliser proposals (recent)

A Simonin et al, Negative Ions, Beams and Sources, AIP Conf. Proc 1515, 532 (2011)
Improved neutralisation – plasma neutraliser

- Take advantage of higher neutralisation cross-sections for collisions with positive ions and electrons compared to gas

- Lower gas requirement

\[\chi = \frac{n_i}{n_i + n_g} \]

K Berkner et al, Production and Neutralisation of Negative Ions and Beams (1980)
Some plasma neutraliser proposals

ECR plasma neutraliser

Arc discharge plasma

Ar at 5x10^-5 Torr
~10% ionisation

Beam driven plasma neutraliser

- Gas neutraliser $n_e \sim 10^{14}\text{m}^{-3}$ or 0.001% ionisation

- Beam generated plasma
 - stripping of D^{-} produces fast electrons (272eV for 1MeV)
 - ionisation of background gas by beam particles (D^{-}, D^{+}, D^{0})
 - electron energy distribution peaks at $\sim 62\text{eV}$ leading to further ionisation

- Plasma density enhancement by multipole confinement

E Surrey and A Holmes, Negative Ions, Beams and Sources, AIP Conf. Proc 1515, 532 (2012)
Neutraliser development

Status

- Initial studies only
- Some experimental tests planned

Technology development

- Photo-detachment neutraliser
 - High power dc lasers
 - Retaining mirror and cavity reflectivity
 - Cooling
 - Stability
 - Radiation damage

- Plasma neutraliser
 - Driven plasma
 - Some experiments with relatively low ionisation
 - Beam driven plasma
 - Initial idea only
 - Higher ionisation
 - High cusp fields
 - Effect of multipole field on beam divergence
 - End losses
Improved electrical efficiency - energy recovery

- Use recovery power supply to collect fraction g of residual negative ions.
- Negative ions decelerated by V_b-V_r to an energy of eV_r.
- Drain current in HV PS reduced by $g\eta$.

Example at 1MeV

$\eta_0 = 0.6$, $\eta_- = \eta_+ = 0.2$

For $g=0.9$, $i_d = 0.82i$

$i_d = i(\eta_0+2\eta_+ - \eta_+ + (1-g)\eta_-) = i(\eta_0+\eta_+ + \eta_- - g\eta_-)$

$= i(1-g\eta_-)$

$i_r = i\eta_-$

Need to keep V_r/V_b as low as possible.

Deceleration and collection

- Input parameters
 - 1MeV beam
 - 2A in each channel
 - 80% of beam
 - core beam only (no halo)

- Modelled after magnetic separation of residual ions
 - Twiss parameters
 - $\alpha = 1.057$
 - $\beta = 5.31 \text{ m/rad}$
 - $\epsilon_{4\text{rms}} = 552 \times 10^{-6} \text{ m rad}$

- Staged deceleration with secondary particle suppression

- Single channel (x-x') shown

Power from the residual positive ions!

- Because the positive ions are created in the neutraliser their current cannot be re-circulated.

- Proposal for direct conversion of positive ion energy to electrical power:
 - Positive ions decelerated to low energy (say ~25kV).

- Resonant modular convertor:
 - Capacitors in modules charged initially to recovery voltage.
 - Drivers of each module switched alternatively.
 - Capacitors discharged through transformer and rectifier circuit.
 - Recovery current acts to charge capacitors.

- Module outputs connected in parallel or series.

Energy recovery development

Status

- First proposed back in 1970's
- Tests with positive ion beamlines
 - CEA Cadarache
- Tests with negative ion beamline
 - CEA Cadarache/JAERI
- No working systems in use!

Technology development

- 1 accelerator/ 1(2) ~ full energy decelerators
- Separation of residual ion beams (D^-/D^+)
 - Electrostatic/magnetic
- Recovery efficiency
 - beam losses in separation and deceleration
 - beam halo!
- Development of positive ion energy conversion and integration
Calculation of wallplug efficiency based on scaling for basic ITER beamline

<table>
<thead>
<tr>
<th>Ion source and beam</th>
<th>Efficiencies and transmission</th>
<th>Neutralisation and energy recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (MeV)</td>
<td>1.0</td>
<td>DC efficiency 0.9</td>
</tr>
<tr>
<td>D⁺ current (A)</td>
<td>59.1</td>
<td>RF efficiency 0.9</td>
</tr>
<tr>
<td>Electron/D⁺ ratio</td>
<td>1</td>
<td>Stripping 0.29 0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No laser Laser</td>
</tr>
<tr>
<td>Electron extraction</td>
<td>10</td>
<td>Core divergence 3-7</td>
</tr>
<tr>
<td>voltage (kV)</td>
<td></td>
<td>(mrad)</td>
</tr>
<tr>
<td>Electron suppression</td>
<td>15</td>
<td>Halo divergence 15</td>
</tr>
<tr>
<td>voltage (V)</td>
<td></td>
<td>(mrad)</td>
</tr>
<tr>
<td>Electron suppression</td>
<td>166</td>
<td>Re-ionisation BTR code Laser power</td>
</tr>
<tr>
<td>current (A)</td>
<td></td>
<td>BTR code</td>
</tr>
<tr>
<td>Filter field voltage</td>
<td>5</td>
<td>Direct interception losses</td>
</tr>
<tr>
<td>(V)</td>
<td></td>
<td>BTR code</td>
</tr>
<tr>
<td>Filter field current</td>
<td>6000</td>
<td></td>
</tr>
<tr>
<td>(A)</td>
<td>RF power (kW)</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>Incidentals (MW)</td>
<td></td>
</tr>
<tr>
<td>No Laser</td>
<td>6</td>
<td>Conversion efficiency 0.9</td>
</tr>
<tr>
<td>Laser</td>
<td>4.4</td>
<td>for positive ions</td>
</tr>
</tbody>
</table>

(BTR: Beam Transmission and Re-ionisation)
Wallplug efficiency for different neutralisation scenarios
Wallplug efficiency under different improved neutralisation and energy recovery scenarios

Wallplug efficiency

5 mrad core divergence
15 mrad halo
Summary

• DEMO represents an aggressive programme on the road to fusion energy

• The success of DEMO and the neutral beam system is predicated on the success of ITER

• Studies of options for improvement of neutral beam system efficiency are commencing now

• There is plenty of room for good ideas!
Acknowledgements

CCFE Technology Programme:
Elizabeth Surrey, Richard Kemp, Ian Jenkins, David Ward and Damian King

This work was funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Thank you for your attention